
NSF Org: |
IOS Division Of Integrative Organismal Systems |
Recipient: |
|
Initial Amendment Date: | August 9, 2016 |
Latest Amendment Date: | August 9, 2016 |
Award Number: | 1546879 |
Award Instrument: | Continuing Grant |
Program Manager: |
Timothy Nelson
IOS Division Of Integrative Organismal Systems BIO Directorate for Biological Sciences |
Start Date: | August 15, 2016 |
End Date: | December 31, 2017 (Estimated) |
Total Intended Award Amount: | $3,233,305.00 |
Total Awarded Amount to Date: | $1,145,433.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
5241 BROAD BRANCH RD NW WASHINGTON DC US 20015-1305 (202)387-6400 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
260 Panama Street Stanford CA US 94305-4101 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | Plant Genome Research Project |
Primary Program Source: |
01001617DB NSF RESEARCH & RELATED ACTIVIT 01002021DB NSF RESEARCH & RELATED ACTIVIT 01001819DB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.074 |
ABSTRACT
In multicellular organisms, some cells specialize in secretory functions. Examples of secretory cells include certain vascular cells that secrete nutrients for distribution, epidermal cells that export protective compounds, nectaries that secrete solutes to reward pollinators, tapetal cells that nourish reproductive cells, and seed coat cells that secrete nutrients to fill seeds. Pathogens apparently tap into nutrient resources by manipulating nutrient secretion systems. Despite the importance of secretory cells, the understanding of these cells and biological processes is limited. This project seeks to identify the fundamental mechanisms of secretory cells, to permit the enhancement of crop quality and yield, of the interaction of plants with other organisms, and of stress tolerance. The project team combines expertise in the genome-wide analysis of individual cell types (Bailey-Serres, & Girke, UC Riverside), membrane transport processes (Frommer, Carnegie, Stanford) and genome editing (Yang, Iowa State U). The project is expected to provide new tools and information of value for agriculture. Concepts and resources developed by the project will be integrated into classes at 2-year institutions with substantial enrollments of underserved students. A public website, blog and forum will provide discussion of genome editing technologies, with the participation of experts and local community colleges.
The SECRETome project seeks to identify specific components and regulatory mechanisms of the varied functions of plant secretory cells. To enable an evaluation of gene function within individual cells and tissues, imaging, ribosome-mRNA complex capture, gene editing and informatics will be employed in an integrated fashion. A comparative approach will be enabled through the analysis of both the crop rice and the reference plant Arabidopsis. Specific aims include (1) the profiling of ribosome-associated transcripts (translatomes) of key secretory cell types with prominent roles in secretion or nursing of neighboring cells in the two species, in the context of two developmental processes and two biotic interactions, (2) the identification of characteristic gene expression patterns and networks for specific secretory cell-types to facilitate selection of candidate genes for functional studies, and (3) the validation and characterization of secretory cell-specific promoters and candidate gene functions, including subcellular location, biochemistry, and reverse-genetic phenotype. The secretory cell-specific promoters will be valuable for other studies (e.g., to control genes for cell-specific processes that enhance pathogen defense, beneficial microbial interactions, fertility or seed quality). The results will provide broad new insights into the intersection between cell function, development and biotic interactions. The project will produce public resources and discourse forums regarding genomic editing with the engagement of undergraduate students.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.