
NSF Org: |
DMS Division Of Mathematical Sciences |
Recipient: |
|
Initial Amendment Date: | September 4, 2012 |
Latest Amendment Date: | February 20, 2014 |
Award Number: | 1160352 |
Award Instrument: | Standard Grant |
Program Manager: |
Mary Ann Horn
DMS Division Of Mathematical Sciences MPS Directorate for Mathematical and Physical Sciences |
Start Date: | September 15, 2012 |
End Date: | August 31, 2015 (Estimated) |
Total Intended Award Amount: | $319,477.00 |
Total Awarded Amount to Date: | $319,477.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
426 AUDITORIUM RD RM 2 EAST LANSING MI US 48824-2600 (517)355-5040 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
301 ADMINISTRATION BUILDING East Lansing MI US 48824-1110 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): |
COMPUTATIONAL MATHEMATICS, MATHEMATICAL BIOLOGY |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.049 |
ABSTRACT
A major feature of biological science in the 21st Century will be its transition from a phenomenological and descriptive discipline to a quantitative and predictive one. Revolutionary opportunities have emerged for mathematically driven advances in biological research. Experimental exploration of self-organizing biomolecular systems, such as HIV viruses, molecular motors and proteins in Alzheimer's disease, has been a dominating driven force in scientific discovery and innovation in the past few decades. However, the emergence of complexity in self-organizing biological systems poses fundamental challenges to their quantitative description because of the excessively high dimensionality. This Focused Research Group (FRG) will provide a platform, led by leading researchers from Michigan State University, University of Wisconsin-Madison and Pennsylvania State University, who will synergistically merge their expertise in theoretical modeling, scientific computing and mathematical analysis, for quantitative descriptions of biomolecular systems. The research addresses grand challenges in the structure, function and dynamics of self-organizing biomolecular systems due to exceptionally massive data sets. These challenges are tackled through the introduction of new variational multiscale models, which reduces the dimensionality and number of degrees of freedom by a macroscopic continuum description of the aquatic/membrane environment, and a microscopic discrete description of biomolecules. Additionally, to further reduce the dimensionality of excessively large biomolecular systems, the investigators introduce a coarse-grained approach based on the density cluster dynamics which extracts stable manifolds in molecular dynamics simulations. This FRG project offers innovative new approaches to the massive data management, dimensionality reduction, computer simulation, theoretical modeling and mathematical analysis of biomolecular systems.
This project is a timely effort to promote the quantitative transition of biological science, which will lead to emerging new fields in both mathematical and biological sciences. In particular, the proposed effort will significantly strengthen the leading role that the U.S. researchers can play in mathematical molecular biosciences by aggressively pursuing cutting-edge research and collaboratively training a new generation of mathematicians in this emerging interdisciplinary field. Three annual workshops and international meeting will be held in Michigan State (Year 1), Wisconsin (Year 2) and Penn State (Year 3) to strengthen the collaboration and extend the societal impact.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.