
NSF Org: |
ECCS Division of Electrical, Communications and Cyber Systems |
Recipient: |
|
Initial Amendment Date: | September 19, 2002 |
Latest Amendment Date: | November 14, 2006 |
Award Number: | 0202487 |
Award Instrument: | Continuing Grant |
Program Manager: |
Paul Werbos
ECCS Division of Electrical, Communications and Cyber Systems ENG Directorate for Engineering |
Start Date: | October 1, 2002 |
End Date: | September 30, 2007 (Estimated) |
Total Intended Award Amount: | $0.00 |
Total Awarded Amount to Date: | $470,993.00 |
Funds Obligated to Date: |
FY 2003 = $156,999.00 FY 2004 = $156,995.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
77 MASSACHUSETTS AVE CAMBRIDGE MA US 02139-4301 (617)253-1000 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
77 MASSACHUSETTS AVE CAMBRIDGE MA US 02139-4301 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): |
CONTROL, NETWORKS, & COMP INTE, INTEGRATIVE SYSTEMS |
Primary Program Source: |
app-0103 app-0104 |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.041 |
ABSTRACT
The objective of this research program is to develop algorithms and architectures, and fabricate and demonstrate a rugged, compact, modular, versatile, opt electronic, integrated-circuit (OEIC) neural network and fuzzy logic coprocessor system that would work in conjunction with the standard PC microprocessor. This OEIC co-processor will perform sophisticated parallel and/or fuzzy processing operations more efficiently than the standard PC microprocessor. The proposed OElC co-processor will be about the size of a CD-ROM drive, and thus would fit easily inside the case of a conventional personal computer. Another important goal of the program is that this compact OEIC co-processor be amenable to mass manufacturing.
To demonstrate the feasibility of the co-processor, the proposed hardware development tasks include: (I) design, fabrication and characterization of novel 2-D arrays of GaAs-SOS (silicon-on sapphire) OEIC cascadable smart pixels with a detector, integrated-circuit logic and a light source in each pixel (resonant cavity light-emitting diodes (RCLEDs) in the first two years of the program, and vertical-cavity surface-emitting lasers (VCSELs) replacing the RCLEDs in the third year), (2) design, fabrication and characterization of novel reconfigurable optical interconnection elements based on arrays of Bragg-holographic phase gratings, (3) aligning (with the help of a mask aligner) and gluing all the components of the co-processor (OEICs. interconnection elements, and output photodetector array) together into a rugged, compact, modular multi-layer sandwich configuration so as to permanently solve any micro-optics alignment problems, and (4) characterizing the resulting high-speed, multilayer optoelectronic co-processor. The early focus of the program will be on neural network configurations. So in addition to the above-mentioned fabrication tasks, the PI will also carry' out the following theoretical, modeling and simulation tasks: (a) develop algorithms, especially those suitable for programmable nearest-neighbor interconnections (e.g. pulse-coupled networks) to solve a large class of multi-dimensional information processing problems, and (b) explore the application of these novel co-processors to three different types of problems: (i) associative-memory-based pattern recognition, (ii) medical image segmentation and (iii) fusion of a set of low-contrast spectro-polarimetric infrared images into a single high-contrast image.
Please report errors in award information by writing to: awardsearch@nsf.gov.