
NSF Org: |
DMR Division Of Materials Research |
Recipient: |
|
Initial Amendment Date: | August 10, 2012 |
Latest Amendment Date: | August 10, 2012 |
Award Number: | 1233704 |
Award Instrument: | Standard Grant |
Program Manager: |
John Schlueter
jschluet@nsf.gov (703)292-7766 DMR Division Of Materials Research MPS Directorate for Mathematical and Physical Sciences |
Start Date: | September 1, 2012 |
End Date: | February 29, 2016 (Estimated) |
Total Intended Award Amount: | $1,200,000.00 |
Total Awarded Amount to Date: | $1,200,000.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
3227 CHEADLE HALL SANTA BARBARA CA US 93106-0001 (805)893-4188 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
Bldg 503, Rm 1355 Santa Barbara CA US 93106-5050 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): |
DMR SHORT TERM SUPPORT, METAL & METALLIC NANOSTRUCTURE |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.049 |
ABSTRACT
TECHNICAL ABSTRACT:
The convergence of new computational capabilities, advanced characterization techniques and the ability to generate and harness large-scale data enables new pathways for the discovery, development and deployment of advanced materials systems. This program engages a multidisciplinary team to develop a fundamental framework for design of a new class of multilayered systems for deployment in new, energy efficient power generation and propulsion systems. Novel complementary computational and experimental tools developed will be integrated with existing tools and applied to a promising new class of intermetallic-strengthened cobalt-base alloys. The unique high-temperature properties of these alloys, when combined with thermal barrier coatings, promise very substantial improvements in powerplant efficiency, motivating GE Energy and GE Global Research as partners in this DMREF-GOALI program. The program will take a systems approach, developing tools and models that permit simultaneous design of the metallic substrate and intermetallic bond coat for compatibility with the ceramic top coat, going beyond the linear, experiment-driven approach historically employed for independent development of these three critical system elements.
NON-TECHNICAL ABSTRACT:
The convergence of new computational capabilities, advanced characterization techniques and the ability to generate and harness large-scale data enables new pathways for the discovery, development and deployment of advanced materials systems. This program engages an engineering and computer science team to develop a fundamental framework for design of new multilayered materials systems for energy efficient power generation and aircraft propulsion. Novel complementary computational and experimental tools will be developed and integrated with existing tools to accelerate development of a newly discovered cobalt-base substrate material along with compatible environmental protection layers. The program will take a systems approach, developing tools and models that permit simultaneous design of the layered system, going beyond the linear, experiment-driven approach historically employed for independent development of these critical system elements.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.