News Release 09-224
Report Says Musicians Hear Better Than Non-Musicians
Music appreciation could help children with language-based learning disabilities
November 13, 2009
This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.
The Journal of Neuroscience reports this week that musicians are better than non-musicians at recognizing speech in noisy environments. The finding from a study conducted by neurobiologists at Northwestern University in Chicago is the first biological evidence that musicians' have a perceptual advantage for "speech-in-noise."
When tested against non-musicians, musicians demonstrated faster neural timing, enhanced representation of speech harmonics, and less degraded response morphology in noise. That is to say, they were more effective communicating in noisy environments.
"Converting key elements that comprise speech sounds--consonants, syllables, timing and harmonics--was maintained with greater fidelity in musicians despite the disruptive influence of background noise," said lead researcher Nina Kraus, Hugh Knowles Professor at and director of Northwestern's Auditory Neuroscience Laboratory.
This likely occurs because cognitive processes that involve auditory attention and memory strengthen musicians' nervous systems enabling them to sense and discern relevant sounds. Understanding the biological basis for this advantage is the goal of the research, which may also prove beneficial for children and adults, who have difficulty hearing in noise.
Speech perception in noise is a complex task people are faced with every day. Cognitive demands of a musical performance are equally complex in that they require musicians to parse concurrently presented instruments or voices.
The researchers hypothesized that a musician's lifelong experience with "musical stream segregation," that is separating competing voices and musical instruments during a performance, would also give musicians an advantage in "speech-in-noise" environments.
Working with doctoral student Alexandra Parbery-Clark and project manager Erika Skoe, both at Northwestern, the researchers gathered 16 highly-trained musicians and 15 non-musicians. Each participant wore a headset and was fed carefully selected target audio and background noise. Target audio consisted of specific speech sounds, consonants, syllables and so on, while background noise consisted of multi-talker babble spoken by six different speakers.
Kraus and her team compared nerve center responses in each of the participants. They found that in both quiet and noisy environments, the highly trained musicians could more readily discern the target acoustic stimulus.
Kraus says the finding could be important for anyone who has difficulty understanding language in a complex soundscape. "Hearing in noise is hard for everyone but can be particularly difficult for some children with learning problems, that have developmental dyslexia for example, and older adults," said Kraus.
"The implication is that musical experience strengthens biological processes that are useful for extracting meaningful signals from any noisy environment, a classroom, a boardroom, etc."
Studies conducted across a length of time, perhaps years, would provide stronger developmental biological evidence of the educational benefits musical experience may have.
The study was supported by the Science of Learning Centers Program at the National Science Foundation.
-NSF-
Media Contacts
Bobbie Mixon, NSF, (703) 292-8070, email: bmixon@nsf.gov
Program Contacts
Soo-Siang Lim, NSF, (703) 292-7878, email: slim@nsf.gov
Principal Investigators
Nina Kraus, Northwestern University, (847) 491-3181, email: nkraus@northwestern.edu
Related Websites
Northwestern University's Auditory Neuroscience Laboratory: http://www.brainvolts.northwestern.edu
The U.S. National Science Foundation propels the nation forward by advancing fundamental research in all fields of science and engineering. NSF supports research and people by providing facilities, instruments and funding to support their ingenuity and sustain the U.S. as a global leader in research and innovation. With a fiscal year 2023 budget of $9.5 billion, NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and institutions. Each year, NSF receives more than 40,000 competitive proposals and makes about 11,000 new awards. Those awards include support for cooperative research with industry, Arctic and Antarctic research and operations, and U.S. participation in international scientific efforts.
Connect with us online
NSF website: nsf.gov
NSF News: nsf.gov/news
For News Media: nsf.gov/news/newsroom
Statistics: nsf.gov/statistics/
Awards database: nsf.gov/awardsearch/
Follow us on social
Twitter: twitter.com/NSF
Facebook: facebook.com/US.NSF
Instagram: instagram.com/nsfgov