Skip to feedback

Award Abstract # 1344264
INSPIRE Track 1: Acoustic Sensor Networks for Ice-Covered Seas

NSF Org: OPP
Office of Polar Programs (OPP)
Recipient: UNIVERSITY OF DELAWARE
Initial Amendment Date: September 16, 2013
Latest Amendment Date: March 7, 2016
Award Number: 1344264
Award Instrument: Continuing Grant
Program Manager: Cynthia Suchman
csuchman@nsf.gov
 (703)292-2092
OPP
 Office of Polar Programs (OPP)
GEO
 Directorate for Geosciences
Start Date: January 1, 2014
End Date: December 31, 2018 (Estimated)
Total Intended Award Amount: $999,520.00
Total Awarded Amount to Date: $999,520.00
Funds Obligated to Date: FY 2013 = $833,520.00
FY 2014 = $166,000.00
History of Investigator:
  • Andreas Muenchow (Principal Investigator)
    muenchow@udel.edu
  • Mohsen Badiey (Co-Principal Investigator)
  • Aijun Song (Former Principal Investigator)
  • Andreas Muenchow (Former Co-Principal Investigator)
  • Zheng Peng (Former Co-Principal Investigator)
Recipient Sponsored Research Office: University of Delaware
550 S COLLEGE AVE
NEWARK
DE  US  19713-1324
(302)831-2136
Sponsor Congressional District: 00
Primary Place of Performance: University of Delaware
261 South College Avenue
Newark
DE  US  19716-3501
Primary Place of Performance
Congressional District:
00
Unique Entity Identifier (UEI): T72NHKM259N3
Parent UEI:
NSF Program(s): SSA-Special Studies & Analysis,
Special Projects - CNS,
ANS-Arctic Natural Sciences,
INSPIRE
Primary Program Source: 01001314DB NSF RESEARCH & RELATED ACTIVIT
01001415DB NSF RESEARCH & RELATED ACTIVIT

0100XXXXDB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s): 1079, 8653
Program Element Code(s): 138500, 171400, 528000, 807800
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.078

ABSTRACT

This INSPIRE award is partially funded by the Arctic Natural Sciences Program in the Division of Polar Programs in the Directorate for Geosciences, the Communications, Circuits and Sensing Systems Program in the Division of Electrical, Communications and Cyber Systems in the Directorate for Engineering,and the Division of Computer and network Systems in the Directorate for Computer and Information Science and Engineering.

The PIs propose to design and develop an integrated underwater acoustic sensor network for ice-covered
seas. It will transmit data wirelessly through acoustic waves from sub-surface ocean sensors to a receiving array with a surface connection to satellites and the Internet. The PIs will expand the limits and capabilities of underwater communication networks in the transition zone where sea ice changes from 1) smooth land-fast ice to 2) ridged mobile ice to 3) open water. This transition zone evolves in both time and space within the 30-50 km foot-print of the proposed networked sensor and communication network array. This goal requires integration of both existing knowledge from a set of diverse disciplines and intellectual innovations within each discipline. It will modify underwater communication network theory, coastal acoustic propagation and scattering, and experimental design of oceanography. Providing long-term, long-range acoustic connectivity, the PI team will address three major new research challenges: 1) Mid-frequency (1-5 kHz), mid-range (10 km) acoustic wave propagation in the transition zone; 2) Data telemetry in the new communication environment; and 3) Resilient sensor networks that cope with and harness complex dynamics of the transition zone. The multi-disciplinary team will implement reliable modem hardware, integrate it with resilient network protocol, and optimize the system design for Arctic deployment to support an ocean experiment off Thule, Greenland.

The sensor and communication network will support 1) long-term, intelligent distributed Arctic observing systems, 2) assimilation of remote-sensing and in-situ under-ice measurements, and 3) regional and global climate modeling with real-time measurements. Such a network holds the promise to revolutionize under-ice ocean sampling in polar regions. Data will be broadly disseminated via the web and archived for public access. Planned outreach includes participation in the field program of Greenlandic residents from the Inupiat village of Qaanaaq and meaningful classroom involvement from the elementary to community college levels. The PIs are also committed to outreach through their global print, radio, TV, and electronic media contacts.

PROJECT OUTCOMES REPORT

Disclaimer

This Project Outcomes Report for the General Public is displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed in this Report are those of the PI and do not necessarily reflect the views of the National Science Foundation; NSF has not approved or endorsed its content.

I want to build a cell phone system under water. I want it to send me a text messages every 30 minutes from 200 feet below the ocean that is covered by sea ice next to a glacier in northern Greenland where polar bears roam to catch seals for food at -40 degrees Fahrenheit. Why would I want to do this and is this is even possible?

Our project successfully showed that it is possible to move data as text messages from a computer in the ocean to another and on to another and then via a cable to a weather station and then on to a satellite and then on to my laptop at home somewhere, anywhere, really [Intellectual Merit]. The ocean data that we moved by whispering from modem to modem (my acoustic cell phone towers) under water can be anything that any scientist may want to study. It could, for example, detect pollutants in the water that seep out of the sediment like gas or oil or radioactive materials buried accidentally [Broader Impacts] such as a nuclear-tipped B-52 bomber that crashed into Wolstenholme Fjord on January-21, 1968 at the height of the Cold War. The propagation of sound under ice also has military applications, because our communication network operates in both ways, that is, if I can receive a text message, I can also send one [Broader Impacts].

While the problem sounds simple enough, it is hard, real hard, because it requires many different people with very different skill sets. Our project included mechanical, electrical, and computer engineers but also scientists who know about acoustics, oceanography, and sea ice, as well as technicians with common sense and practical abilities to keep machines and people moving and running safely. This includes guns that we had to carry while working on the sea ice via snowmobile to protect from polar bears and medically trained personnel who could spot frostbites before they bite. All of this has to come together in just the right way and right time. Good and successful science is more than just engineering and machines, there is a strong human element in all polar field work such as ours.

The first step in our project involved the design of the acoustic modems that Lee Freitag of Woods Hole Oceanographic Institution did many years back. It took us about 2 years to select this design that Lee then modified for this application in 2014-15). The second step involved the selection of a study site where our small group of 6 people could work and experiment and learn by some trial and error without incurring extra-ordinary costs (2015-16). It helped that I was in and out of Thule Air Base on unrelated projects in 2015 and 2016 when we settled for the final experiment to take place in March and April of 2017. Satellite remote sensing tools where then developed to quantify sea ice conditions for safe operation and navigation traveling on the ice. We uncovered a barely visible area of thin ice to the south of Manson Island that recurs at the same location every year. We stayed clear of this area.

Field work started with a survey of sea ice thickness on Mar. 18/19, 2017 by drilling 2'' holes through the sea ice that varied in measured thickness from 0.12 m (4 inches) near Manson Island to 1.25 m (4 feet) near Thule Air Base. On Mar.-23, 2017 we deployed the weather station along with a tent and survival gear at the center of our study area. An ocean temperature mooring was deployed to complement in time a spatial survey of ocean sound speed profiles estimated from conductivity, temperature, depth (CTD) measurements. We drilled 10'' holes through the sea ice for our profiling CTD operated via an electrical winch. Our CTD survey spanned the entire fjord from three tidewater glaciers in the east to the edge of the sea ice in the west. Concurrently ocean testing of acoustic communication between modems commenced Apr.-8, 2017 and the final array was deployed Apr.-14/15 to be fully operational Apr.-16/18. All gear was recovered and stored at Thule Air Base Apr.-18/19, 2017 before our departure Apr.-20, 2017.

Subsequent analysis in 2017/18 revealed a successful experiment as data from ocean sensors traveled along multiple paths to the weather station and on to the internet. All data were submitted to the NSF Arctic Data Center where after review they will become public at

https://arcticdata.io/catalog/view/urn:uuid:f971cf25-ed73-412d-bd52-98f84b3845c0


Last Modified: 03/31/2019
Modified by: Andreas Muenchow

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page