
NSF Org: |
CCF Division of Computing and Communication Foundations |
Recipient: |
|
Initial Amendment Date: | September 13, 2011 |
Latest Amendment Date: | March 3, 2015 |
Award Number: | 1111382 |
Award Instrument: | Continuing Grant |
Program Manager: |
Dmitri Maslov
CCF Division of Computing and Communication Foundations CSE Directorate for Computer and Information Science and Engineering |
Start Date: | September 1, 2011 |
End Date: | March 31, 2016 (Estimated) |
Total Intended Award Amount: | $1,286,337.00 |
Total Awarded Amount to Date: | $1,318,337.00 |
Funds Obligated to Date: |
FY 2012 = $613,825.00 FY 2013 = $0.00 FY 2014 = $0.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
4333 BROOKLYN AVE NE SEATTLE WA US 98195-1016 (206)543-4043 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
4333 BROOKLYN AVE NE SEATTLE WA US 98195-1016 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): |
QIS - Quantum Information Scie, Algorithmic Foundations, ALGORITHMS |
Primary Program Source: |
01001213DB NSF RESEARCH & RELATED ACTIVIT 01001314DB NSF RESEARCH & RELATED ACTIVIT 01001415DB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
Quantum information science has yielded deep theoretical insights into the nature of information and communication, while raising the hope of dramatically more capable computers and communication networks. But the achievement of these practical goals is hindered by the inherent fragility of quantum information. Traditional approaches for obtaining reliability through simple redundancy do not work; instead, fault tolerance must, and can, in principle, be obtained through subtler techniques that contrive to measure and correct errors without learning anything about the encoded data.
Unfortunately present methods for fault-tolerant quantum computation require significant overhead, and present understanding of quantum channel capacities remain very limited. For example, no quantum code is known on which arbitrary fault-tolerant quantum computation can be performed without leaving the code space. And only very recently was it discovered that classical information can be sent at rates exceeding the long-conjectured Holevo bound.
This project will attempt to develop new methods for reliable quantum communication and computation in the presence of noise. First, the research will push the capabilities and boundaries of quantum error-correction techniques, both by extending and delineating the types of correctable errors, and by determining the scenarios under which such error correction is or is not possible. The second goal is to develop the deep but heretofore largely unexplored connections between quantum codes, entanglement, and many-body physics, complexity theory, cryptography and high-dimensional geometry. The objective is to advance our understanding both of quantum codes as well as the related areas of mathematics, physics and computer science. Finally the team will seek to elucidate the subtle differences between quantum communication and its closest classical analog---private communication.
This research endeavors to contribute definitively to realistic embodiments of large-scale quantum computers, which would dramatically improve mankind's ability to process and communicate information. And the research program itself is deeply interdisciplinary, bringing together physicists, computer scientists and mathematicians from industry and academia, and training students and postdocs.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.