News Release 18-005

Cloud seeding for snow: Does it work? Scientists report first quantifiable observations

Researchers traced transition of ice crystals into snowflakes

aircraft

The King Air research aircraft prepares for a SNOWIE project flight from the Boise Airport.


January 22, 2018

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

For the first time, scientists have obtained direct, quantifiable observations of cloud seeding for increased snowfall -- from the growth of ice crystals, through the processes that occur in clouds, to the eventual snowfall.

The National Science Foundation (NSF)-supported project, dubbed SNOWIE (Seeded and Natural Orographic Wintertime Clouds -- the Idaho Experiment), took place from Jan. 7 to March 17, 2017, in and near Idaho's Payette Basin, located approximately 50 miles north of Boise.

The research was conducted in concert with the Boise-based Idaho Power Company, which provides a large percentage of its electrical power through hydroelectric dams.

Throughout the Western U.S. and in other semi-arid mountain regions across the globe, water supplies are maintained primarily through snowmelt. Growing human populations place a higher demand on water, while warmer winters and earlier springs reduce snowpack and water supplies. Water managers see cloud seeding as a potential way of increasing winter snowfall.

"But no one has had a comprehensive set of observations of what really happens after you seed a cloud," says Jeff French, an atmospheric scientist at the University of Wyoming (UW) and SNOWIE principal investigator. "There have only been hypotheses. There have never been observations that show all the steps in cloud seeding."

French is the lead author of a paper reporting the results, published in today's issue of the journal Proceedings of the National Academy of Sciences. Co-authors of the paper are affiliated with the University of Colorado- Boulder, University of Illinois at Urbana-Champaign, the National Center for Atmospheric Research, and the Idaho Power Company.

French credited modern technology with making the detailed cloud-seeding observations possible, citing the use of ground-based radar as well as radar on UW's King Air research aircraft and multiple flights over the mountains near Boise.

"This research shows that modern tools can be applied to longstanding scientific questions," says Nick Anderson, a program director in NSF's Division of Atmospheric and Geospace Sciences, which funded the study. "We now have direct observations that seeding of certain clouds follows a pathway first theorized in the mid-20th century."

Cloud seeding stimulates snowfall by releasing silver iodide into clouds from the air or from ground-based generators. In the SNOWIE project, an aircraft supported by the Idaho Power Company released the silver iodide, while the UW King Air took measurements to monitor the silver iodide's impact.

Cloud seeding occurred during 21 flights. During three flights, Idaho Power was forced to suspend cloud seeding because there was already so much snow in the Idaho mountains, French says. The UW King Air made 24 flights lasting four to six hours each, the last three monitoring natural snowfall activity.

Numerical modeling of precipitation measurements was conducted using a supercomputer nicknamed Cheyenne at the NCAR-Wyoming Supercomputing Center.

The numerical models simulated clouds and snowfall over the Payette Basin, as created both in natural storms and with cloud seeding. The models are enabling researchers to study storms where measurements have not been obtained in the field.

"In the long-term, we will be able to answer questions about how effective cloud seeding is, and what conditions may be needed," says French. "Water managers and state and federal agencies can make decisions about whether cloud seeding is a viable option to add additional water to supplies from snowpack in the mountains."

-NSF-

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, email: cdybas@nsf.gov
Ron Podell, University of Wyoming, (307) 766-2353, email: rpodell@uwyo.edu

The U.S. National Science Foundation propels the nation forward by advancing fundamental research in all fields of science and engineering. NSF supports research and people by providing facilities, instruments and funding to support their ingenuity and sustain the U.S. as a global leader in research and innovation. With a fiscal year 2023 budget of $9.5 billion, NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and institutions. Each year, NSF receives more than 40,000 competitive proposals and makes about 11,000 new awards. Those awards include support for cooperative research with industry, Arctic and Antarctic research and operations, and U.S. participation in international scientific efforts.

mail icon Get News Updates by Email 

Connect with us online
NSF website: nsf.gov
NSF News: nsf.gov/news
For News Media: nsf.gov/news/newsroom
Statistics: nsf.gov/statistics/
Awards database: nsf.gov/awardsearch/

Follow us on social
Twitter: twitter.com/NSF
Facebook: facebook.com/US.NSF
Instagram: instagram.com/nsfgov