Email Print Share

News Release 11-155

Largest-Ever Map of Interactions of Plant Proteins Produced

New map of protein interactions in model plant may help scientists improve plant species used in agriculture and pharmaceuticals

Interactions between previously sequenced Arabidopsis proteins are described in a new network map.

Interactions between previously sequenced Arabidopsis proteins are described in a new network map.


July 28, 2011

View a video about sequencing the Arabidopsis genome.

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

An international consortium of scientists has produced the first systematic network map of interactions that occur between proteins in the plant Arabidopsis thaliana. (Arabidopsis is a mustard plant that has 27,000 proteins and serves as a popular model organism for biological studies of plants, analogous to lab rats that serve as popular model organisms for biological studies of animals.)

Known as an "interactome," the new Arabidopsis network map defines 6,205 protein-to-protein Arabidopsis interactions involving 2,774 individual proteins. By itself, this map doubles the volume of data on protein interactions in plants that is currently available.

The new network map is covered in the July 29th issue of Science. It was produced with partial funding from the National Science Foundation by the so-called "Arabidopsis Interactome Mapping Consortium." The Consortium has an international membership and is composed of many institutions and researchers.

The Consortium's new network map of Arabidopsis has already provided the foundation for new discoveries involving plant growth and disease resistance. For example, the July 29 issue of Science features a companion study that--built on the new map-- identifies proteins that help Arabidopsis fight various pathogens. Such findings may help advance efforts to improve crop plants.

The production of the Arabidopsis network map was made possible, in part, by the previous production of the genome sequence of Arabidopsis; this sequence is a veritable "parts list" of the plant's genetic components. But more revealing than the genome sequence, the network map provides insights on the functions of proteins, the compositions of protein communities, and the evolutionary changes of proteins through time, among other things. (See illustration.)

"This starts to give us a big, systems-level picture of how Arabidopsis works, and much of that systems-level picture is going to be relevant to--and guide further research on--other plant species, including those used in human agriculture and even pharmaceuticals," says Salk Institute biologist Joseph Ecker, a senior member of the Consortium.

Nevertheless, because of the vast complexity of Arabidopsis's biology, the 6,205 Arabidopsis protein-to-protein interactions identified in the plant's new network map represents only about two percent of Arabidopsis protein interactions. Larger and more sensitive maps that identify more of these interactions are expected to be developed in the future.

-NSF-

Media Contacts
Stacie Spector, Salk Institute, (858) 453-4100, email: sspector@salk.edu
Lily Whiteman, National Science Foundation, (703) 292-8310, email: lwhitema@nsf.gov
Patric Lane, University of North Carolina, (919) 962-8596, email: patric_lane@unc.edu

Program Contacts
Michael Mishkind, National Science Foundation, (703) 292-8413, email: mmishkin@nsf.gov

Principal Investigators
Joseph Ecker, Salk Institute, (858) 453-4100, email: ecker@salk.edu
Jeff Dangl, University of North Carolina, (919) 962-5624, email: jdangl@email.unc.edu

The U.S. National Science Foundation propels the nation forward by advancing fundamental research in all fields of science and engineering. NSF supports research and people by providing facilities, instruments and funding to support their ingenuity and sustain the U.S. as a global leader in research and innovation. With a fiscal year 2023 budget of $9.5 billion, NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and institutions. Each year, NSF receives more than 40,000 competitive proposals and makes about 11,000 new awards. Those awards include support for cooperative research with industry, Arctic and Antarctic research and operations, and U.S. participation in international scientific efforts.

mail icon Get News Updates by Email 

Connect with us online
NSF website: nsf.gov
NSF News: nsf.gov/news
For News Media: nsf.gov/news/newsroom
Statistics: nsf.gov/statistics/
Awards database: nsf.gov/awardsearch/

Follow us on social
Twitter: twitter.com/NSF
Facebook: facebook.com/US.NSF
Instagram: instagram.com/nsfgov