Email Print Share

News Release 99-041

'Altered State' May Be Responsible for Creating Important Brain Chemicals


June 10, 1999

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

Twenty years after visualizing a surprising left-handed form of the DNA double helix, Massachusetts Institute of Technology researcher Alexander Rich has found that this altered form of genetic material is involved in some important biological activities, including creating proteins essential for normal brain function. Rich's work is funded in part by the National Science Foundation (NSF).

In the 1970s, when Rich and his colleagues solved for the first time the three-dimensional structure of a DNA crystal fragment, they were puzzled. Instead of looking like the right handed double helix Watson and Crick had described in 1953, the structure was a left-handed double helix with an irregular zig-zag backbone.

Is this unusual form of DNA, dubbed Z-DNA by the researchers, an oddity or is it biologically significant? In this week's issue of the journal Science, Rich and colleagues partly resolve the issue. They describe how the three-dimensional structure of Z-DNA binds to a portion of an enzyme. The enzyme binds to Z-DNA with great specificity, leading scientists to conclude that the two serve a biological function. The enzyme creates a modified protein that is used by the brain as a receptor for serotonin, among other things. Yet another striking example of nature's ability to perform many functions with the same materials, the protein bound to Z-DNA is closely related in three-dimensional structure to a family of proteins known to bind to right-handed DNA.

"This work clearly demonstrates that DNA structure is not symmetric or regular," explains Kamal Shukla, program director for biophysics at NSF. "Rich's results will be important to a better understanding of gene expression, viral DNA packaging and many other important biological functions."

Adds Rich, "Twenty years after first visualizing a left handed form of the DNA double helix, it may now be possible to see ways in which nature uses this altered form of the molecule to carry out important biological activities."

Much has been learned about Z-DNA since it was first discovered. It turns out that Z-DNA is found only transiently when genes are actively being transcribed. It occurs mainly in specialized sequences of nucleotides, the building blocks of genetic material, and is stabilized by processes that partially unwind the normal right-handed DNA double helix. The main process that produces such an unwinding is transcription (the synthesis of messenger RNA), which is used as a template for assembling proteins in biological systems.

The system works this way: When the enzyme making RNA, called RNA polymerase, moves along the DNA double helix, it leaves behind underwound DNA. Selected sequences in this DNA temporarily become left-handed Z-DNA, like a stretched phone cord coiling backwards on itself.

When the RNA polymerase stops moving, other enzymes relax the DNA and it reverts to its normal right-handed form. Like a stretched phone cord that is released, it snaps back into its usual shape.

Rich's work is also funded by the National Institutes of Health.

-NSF-

Media Contacts
Cheryl L. Dybas, NSF, (703) 292-8070, email: cdybas@nsf.gov

Program Contacts
Kamal Shukla, NSF, (703) 292-7131, email: kshukla@nsf.gov

The U.S. National Science Foundation propels the nation forward by advancing fundamental research in all fields of science and engineering. NSF supports research and people by providing facilities, instruments and funding to support their ingenuity and sustain the U.S. as a global leader in research and innovation. With a fiscal year 2023 budget of $9.5 billion, NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and institutions. Each year, NSF receives more than 40,000 competitive proposals and makes about 11,000 new awards. Those awards include support for cooperative research with industry, Arctic and Antarctic research and operations, and U.S. participation in international scientific efforts.

mail icon Get News Updates by Email 

Connect with us online
NSF website: nsf.gov
NSF News: nsf.gov/news
For News Media: nsf.gov/news/newsroom
Statistics: nsf.gov/statistics/
Awards database: nsf.gov/awardsearch/

Follow us on social
Twitter: twitter.com/NSF
Facebook: facebook.com/US.NSF
Instagram: instagram.com/nsfgov