Email Print Share

All Images


News Release 18-094

Extremely close look at electron advances frontiers in particle physics

Beam of molecules fired into gauntlet of lasers shows spherical electron charge

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

Artist's representation of an electron traveling between two lasers in an experiment.

In this artist's representation, an electron travels between two lasers in an experiment. The electron is spinning about its axis as a cloud of other subatomic particles are constantly emitted and reabsorbed. Some theories in particle physics predict particles, as yet undetected, that would cause the cloud to appear very slightly pear-shaped when seen from a distance. With the support of the National Science Foundation, ACME researchers created an experimental setup look at that shape with extreme precision. To the limits of their experiment, they saw a perfectly round sphere, implying that certain types of new particles, if they exist at all, have properties different from those theorists expected.

Credit: Nicolle R. Fuller, NSF


Download the high-resolution JPG version of the image. (2.4 MB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.

Artist's representation of an electron orbiting an atom's nucleus.

In this artist's representation, an electron orbits an atom's nucleus, spinning about its axis as a cloud of other subatomic particles are constantly emitted and reabsorbed. Some theories in particle physics predict particles, as yet undetected, that would cause the cloud to appear very slightly pear-shaped when seen from a distance. With the support of the National Science Foundation, ACME researchers created an experimental setup look at that shape with extreme precision. To the limits of their experiment, they saw a perfectly round sphere, implying that certain types of new particles, if they exist at all, have properties different from those theorists expected.

Credit: Nicolle R. Fuller, NSF


Download the high-resolution JPG version of the image. (2.5 MB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.