NSF's ChemMatCARS: A Synchrotron X-ray National Facility for Chemistry and Materials Research

Science Highlights in Advanced Crystallography

Ted BetleyCo-PI of NSF's ChemMatCARS,
Harvard University

NSF's ChemMatCARS

UCHICAGO

Jason Benedict
Co-PI of NSF's ChemMatCARS,
University at Buffalo

Elemental identification at given crystallographic sites
Only at synchrotron light sources

$$f = f^0 + f' + if''$$

7.09 keV

Permits site-specific element ID and oxidation state determination

Elemental identification at given crystallographic sites
Only at synchrotron light sources

Fe K-edge:
photoionization of a
Fe(1s) electron

Elemental identification at given crystallographic sites
Only at synchrotron light sources

Elemental identification at given crystallographic sites
Only at synchrotron light sources

Powers, et al. JACS 2013, 135, 12289

Resonant Diffraction/Diffraction Anomalous Fine Structure (DAFS)

- > Identification of specific elements at given crystallographic sites
- ➤ Proposed the canted beamline would extend the energy range down to 3 keV, providing access to the entire series of 3d → 4d transition metals, including Sc, Ti, V, K, and Ca, which are not accessible on the existing beamline

> Only at synchrotron light sources

Structural Dynamics Today

In-situ crystal diffraction

Environmental Control Cell (ECC)

•Vacuum, gas, solution and humidity

Benedict Group and ChemMatCARS J. Appl. Cryst.(2015), 48, 578-581

Environmental control cells (ECCs)
Study crystalline nanoporous materials under 'real world' conditions

Time Resolved Structural Dynamics

Trihydrate (one coordinated water and two 'free' water molecules)

Space group
$$P2_1/c$$

 $a = 12.4381 \text{ Å}$
 $b = 7.6827 \text{ Å}$
 $c = 15.8704 \text{ Å}$
 $\beta = 106.1466 ^{\circ}$

Anhydrous

Space group
$$P2_1/c$$

 $a = 11.078 \text{ Å}$
 $b = 7.761 \text{ Å}$
 $c = 15.945 \text{ Å}$
 $\beta = 106.829 ^{\circ}$

- How do water molecules leave?
 - Stepwise?
 - Simultaneous?
- What is the relationship between compression of a-axis and dehydration?
- Dynamic in situ X-ray
 Diffraction experiments
 should address both
 questions!

Time Resolved Structural Dynamics

- How do water molecules leave?
 - Stepwise?
 - Simultaneous?
- What is the relationship between compression of a-axis and dehydration?
- Dynamic in situ X-ray
 Diffraction experiments
 should address both
 questions!

Structural Dynamics Tomorrow: Small Molecule Serial Crystallography

- What is it?
 - Technique developed by structural biologists
 - Datasets consist of single images collected from tens or hundreds of thousands of single crystals
 - New sample delivery methods
 - New data analysis methods
- Why would you do this?
- Only method capable of obtaining time-resolved data on:
 - Irreversible processes
 - Applies to process and damage
 - Sub-micron crystals

