Spectral Tweets: A Community Paradigm for Spatio-temporal Cognitive Sensing and Access

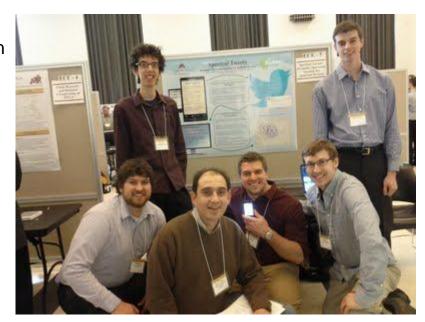
Nikos Sidiropoulos, Georgios Giannakis, Jarvis Haupt

NSF EARS PI Workshop, Mon. Oct. 7, 2013, 9:40-10:00 AM

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁵⁴

Spectral Tweeters

Nikos Sidiropoulos, Georgios Giannakis, Jarvis Haupt


Balasubramanian Gopalakrishnan

Omar Mehanna

Emiliano Dall'Anese

Akshay Soni

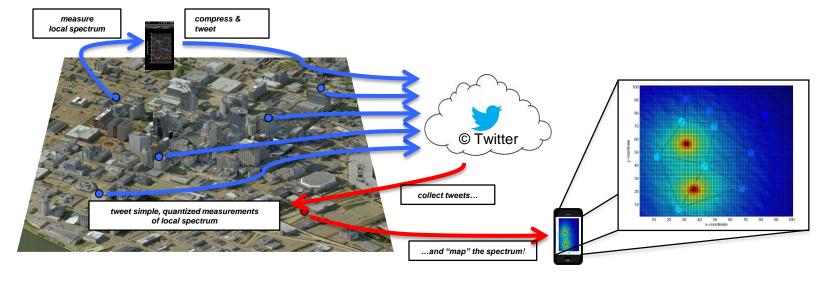
Brian Baingana

Swayambhoo Jain

Grayson Malinowski, Michael Owczarek, Michael Fiore, Martin Corbett, Alex Hulke

Spectral Tweets: A Community Paradigm for Spatio-temporal Cognitive Sensing and Access

Research Goals

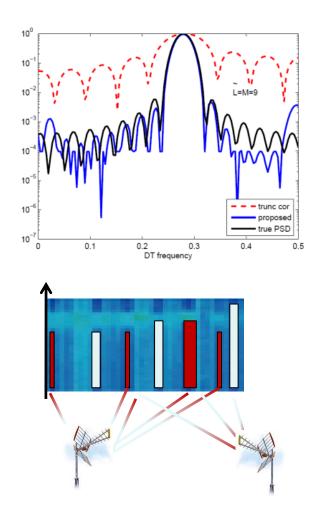

- Crowdsource spectrum sensing → spectrum sensing web of mobile devices
- Efficient distributed power spectrum compression
- Dictionary learning (DL) and quantized compressed sensing (CS) – based spectrum sensing, primary user and interference channel estimation and tracking
- Measurement-based spectrum management

Potential Payoff

- Mobile spectrum sensing web can reveal abundant transmission opportunities → enhance access for millions of people
- Distributed spectral analysis, rate-distortion, quantized DL/CS tools

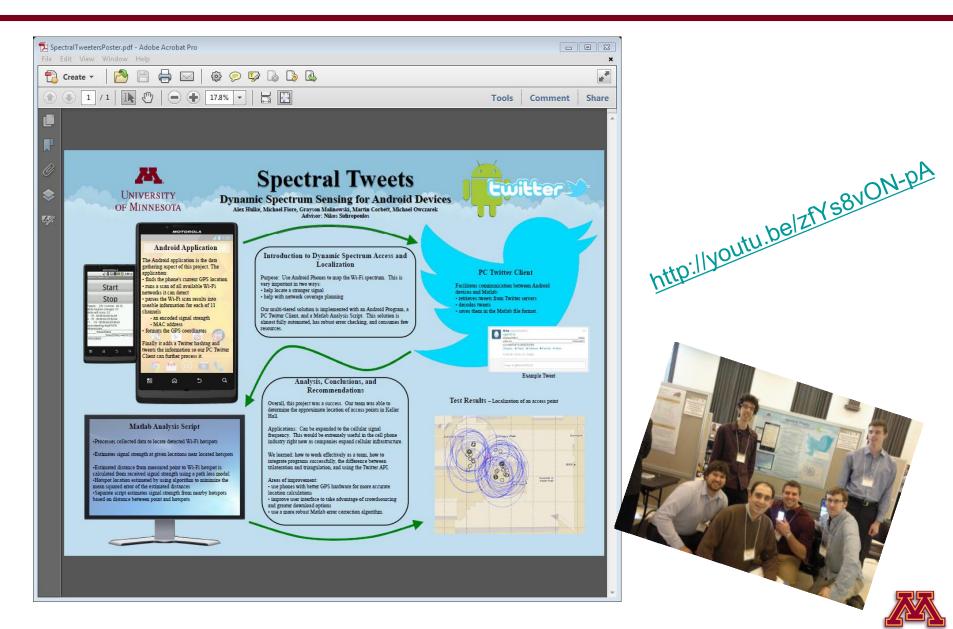
Education

 Sensing/twitting app development & demo senior/honors design. Top talent trained in spectrum sensing, CR, wireless app programming


Spectral Tweets: Research Thrusts

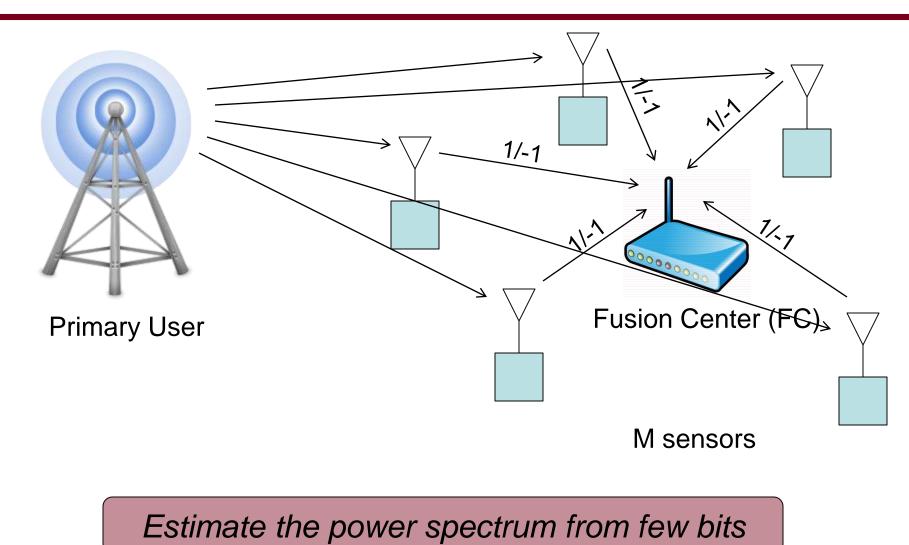
Nonparametric power spectrum compression

- Distributed power spectrum compression and sensing
- Dimensionality reduction quantized canonical correlation analysis
- Dictionary learning for blind primary user fingerprinting and tracking
 - Distributed DL
 - Dynamic DL
 - Quantized DL and CS


Measurement-based spectrum management

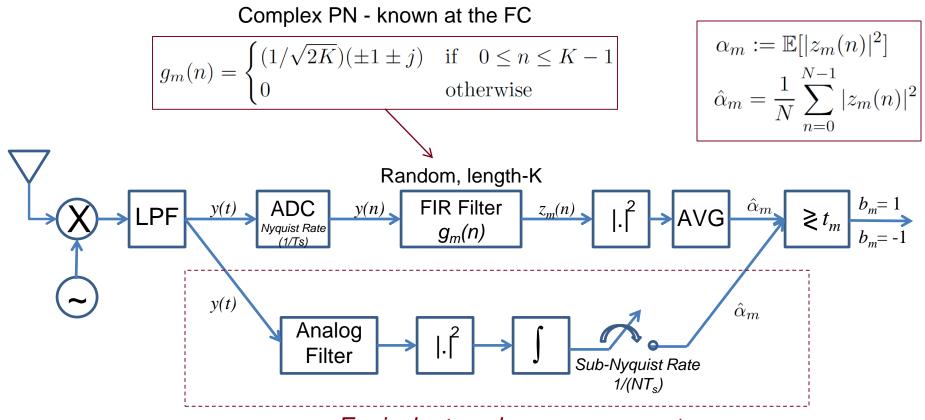
- Joint CR power control and interference mitigation
- Cognitive resource management

Proof of concept prototyping


Power Spectrum Sensing

- Only *power spectrum* (PSD) needed for cognitive radio
 - No need to reconstruct the spectrum of the original signal
 - − Can estimate from Fourier transform of truncated autocorrelation
 → finite parameterization
 - Sampling rate requirements significantly decreased without requiring frequency-domain sparsity^{1,2}
- Collaborative spectrum sensing
 - Exploit spatial diversity in distributed sensors to avoid hidden terminal problem, mitigate fading, enhance sensing reliability

Challenge: collaborative **power** spectrum sensing using low-end sensors with limited communication capabilities


Frugal Sensing

O. Mehanna, and N.D. Sidiropoulos, "Frugal Sensing: Wideband Power Spectrum Sensing from Few Bits", *IEEE Trans. on Signal Processing*, vol. 61, no. 10, pp. 2693-2703, May 2013.

Sensor Measurement Chain

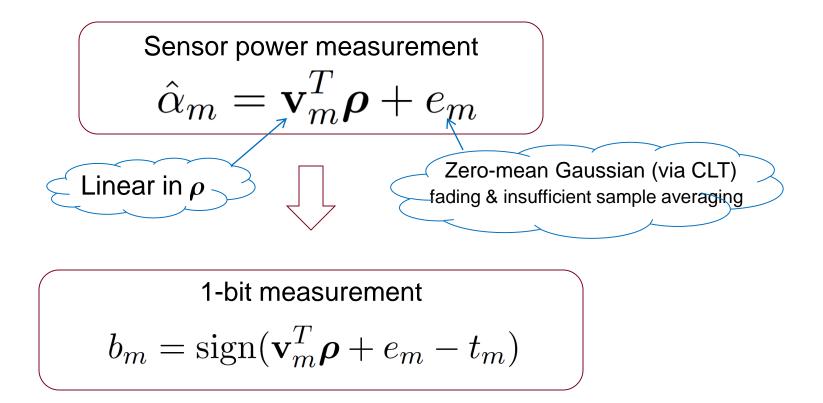
Equivalent analog measurement

Model-Based Power Spectrum

Model-based power spectrum

 $S_x(\omega) = \sum_{\ell=1}^L \rho_\ell \Psi_\ell(\omega)$

• Received signal at sensor *m*


$$y_m(n) = \sum_{\ell=1}^L h_m(\ell) \sqrt{\rho_\ell} x_\ell(n)$$
 Random fading

• Random filter output

 $z_{m}(n) = \sum_{k=0}^{K-1} g_{m}(k) y_{m}(n-k) \quad \Longrightarrow \quad \alpha_{m} = \mathbb{E}[|z_{m}(n)|^{2}] = \sum_{\ell=1}^{L} |h_{m}(\ell)|^{2} \rho_{\ell} v_{m,\ell}$ $v_{m,\ell} := \sum_{k=1-K}^{K-1} \psi_{\ell}(k) e^{jk\omega_{\ell}} q_{m}^{*}(k)$ $\bigcup_{\substack{k=1-K \\ l-\text{DTFT of } \Psi(\omega)}} e^{jk\omega_{\ell}} q_{m}^{*}(k)$

1-Bit Power Measurement

Spectral estimation from inequalities instead of equalities

Omar Mehanna, Nicholas D. Sidiropoulos, Efthymios Tsakonas (2013). *MODEL-BASED POWER SPECTRUM SENSING FROM A FEW BITS*. 21st European Signal Processing Conference - EUSIPCO 2013. Marrakech, Morocco.

Convex ML Formulation

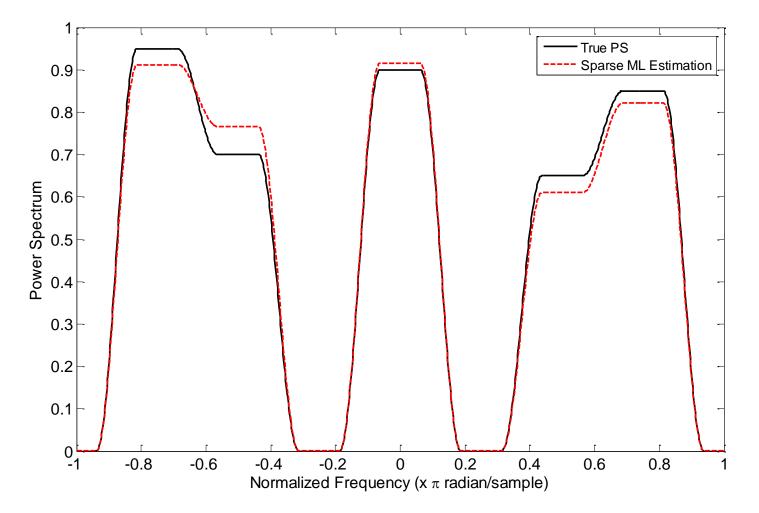
$$b_m = \operatorname{sign}(\mathbf{v}_m^T \boldsymbol{\rho} + e_m - t_m) \qquad \qquad \mathcal{M}_+ := \{m | b_m = 1\}$$

i.i.d Gaussian
$$\mathcal{M}_- := \{m | b_m = -1\}$$

$$f(b_{1}, \dots, b_{M} | \boldsymbol{\rho}) = \prod_{m \in \mathcal{M}_{+}} \Pr(\mathbf{v}_{m}^{T} \boldsymbol{\rho} + e_{m} \ge t_{m}) \prod_{m \in \mathcal{M}_{-}} \Pr(\mathbf{v}_{m}^{T} \boldsymbol{\rho} + e_{m} < t_{m})$$
$$= \prod_{m \in \mathcal{M}_{+}} \Phi\left(\frac{\mathbf{v}_{m}^{T} \boldsymbol{\rho} - t_{m}}{\sigma_{m}}\right) \prod_{m \in \mathcal{M}_{-}} \Phi\left(-\frac{\mathbf{v}_{m}^{T} \boldsymbol{\rho} - t_{m}}{\sigma_{m}}\right)$$
$$\operatorname{Gaussian CDF}$$

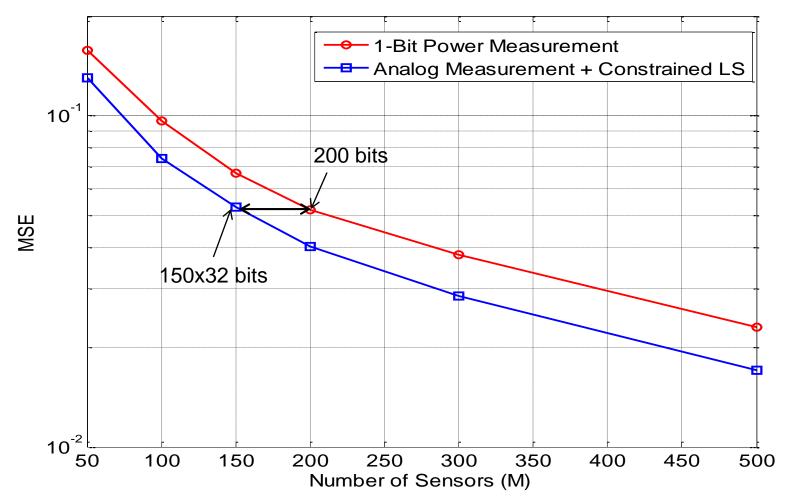
• Convex (sparse) ML

control sparsity


$$\max_{\rho \in \mathcal{B}} \sum_{m=1}^{M} \log \Phi \left(\frac{b_m (\mathbf{v}_m^T \boldsymbol{\rho} - t_m)}{\sigma_m} \right) - \lambda \sum_{\ell=1}^{L} \rho_\ell$$

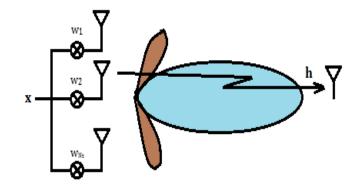
Omar Mehanna, Nicholas D. Sidiropoulos, Efthymios Tsakonas (2013). *MODEL-BASED POWER SPECTRUM SENSING FROM A FEW BITS*. 21st European Signal Processing Conference - EUSIPCO 2013. Marrakech, Morocco.

Example


L = 8 equispaced raised-cosine $\Psi_{\ell}(\omega)$, *M* = 150 sensors, $t_m = t$, 50 sensors send $b_m = 1$, random errors flipped 10 sensor measurement bits, sparsity parameter $\lambda = 50$

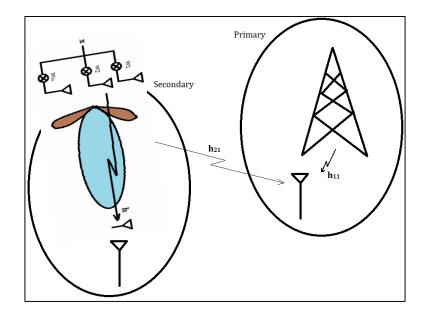
1-Bit Quantization Loss

Rayleigh fading: random errors flipped 30% of sensor measurement bits on average



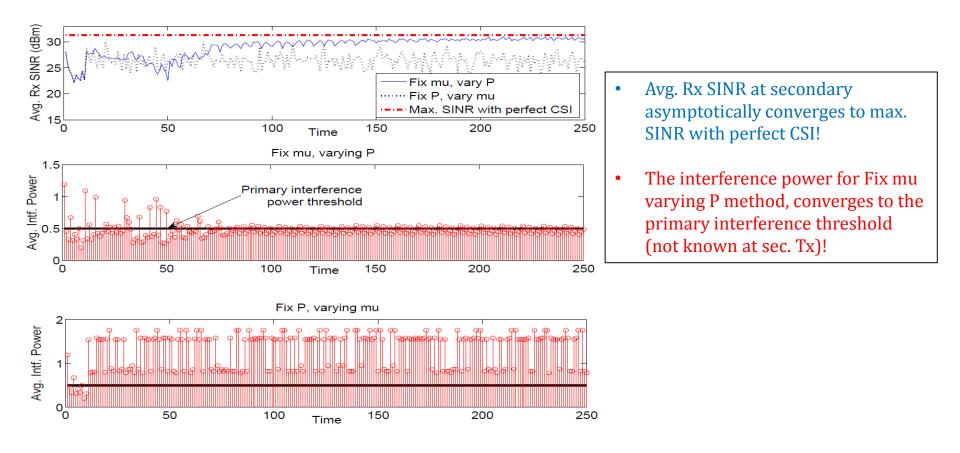
Omar Mehanna, Nicholas D. Sidiropoulos, Efthymios Tsakonas (2013). *MODEL-BASED POWER SPECTRUM SENSING FROM A FEW BITS*. 21st European Signal Processing Conference - EUSIPCO 2013. Marrakech, Morocco.

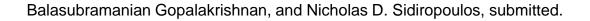
Cognitive Transmit Beamforming


- Transmit beamforming Use multiple antennas to steer radiated power along specific directions that provide good QoS @ Rx
- Also need to protect primary Rx

- Need CSI @ Tx for both secondary `target' Rx, and primary Rx to avoid
- Impractical, especially in cognitive radio networks where the primary Rx has no incentive (or ability) to cooperate
- CSI feedback overhead ~ number of users and antennas

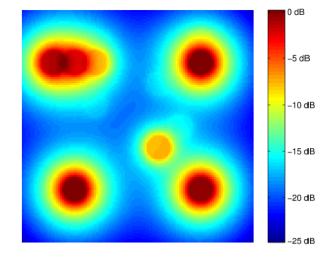
Cognitive Transmit Beamforming

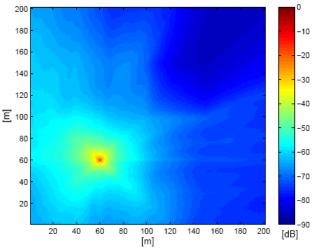

- Wish list:
 - 1. Low overhead transmit beamforming techniques that *learn* sTx-sRx *and* sTx-pRx channel correlation matrices and *approach* near-optimal performance *without* explicit CSI feedback or changing legacy protocols ...
- Free lunch?


Balasubramanian Gopalakrishnan, and Nicholas D. Sidiropoulos, submitted.

Almost! – exciting preliminary results!

Cognitive Transmit Beamforming N_t = 5


PHY sensing via RF cartography


- Power spectral density (PSD) maps
- Capture ambient power in space-timefrequency
- Identify regions with high interference temperature

Channel gain (CG) maps

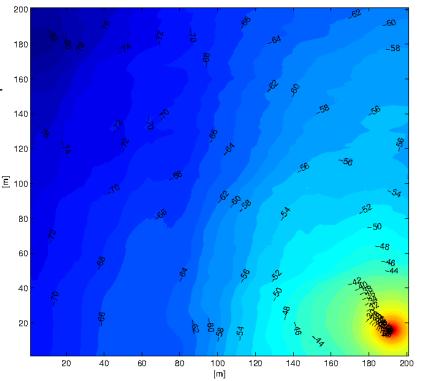
- Time-frequency channel from any-to-any point
- CRs adjust Tx power to minimize PU disruption

S.-J. Kim, E. Dall'Anese, J. A. Bazerque, K. Rajawat, and G. B. Giannakis, "Advances in Spectrum Sensing and Cross-Layer Design for Cognitive Radio Networks," *EURASIP, E-Ref. Signal Processing*, Nov. 2012.

Any-to-any channel gain estimation

- Shadowing model-free approach
 - Slow variations in shadow fading
 - \blacktriangleright Low-rank any-to-any CG matrix $\hat{\mathbf{G}}$

Approach: low-rank matrix completion


$$\min_{\mathbf{C},\mathbf{W}} \|\mathcal{P}_{\mathcal{S}}(\mathbf{G} - \mathbf{C}\mathbf{W}')\|_{F}^{2} + \lambda(\|\mathbf{C}\|_{F}^{2} + \|\mathbf{W}\|_{F}^{2})^{T}$$

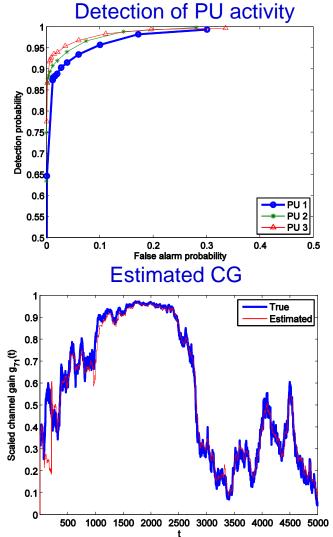
Payoffs: global view of any-to-any CG: real-time propagation metrics; efficient resource allocation

Outlook: kernel-based extrapolator for missing CR-to-PU measurements, look-ahead intervals; quantized DL tweets

S.-J. Kim and G. B. Giannakis, "Dynamic Network Learning for Cognitive Radio Spectrum Sensing," *Proc. of Intl. Workshop on Comp. Advances in Multi-Sensor Adaptive Process.*, Saint Martin, 2013.

Estimated CG map

PU power and CR-PU link learning


- Reduce overhead in any-to-any CG mapping
 - Learn CGs only between CRs and PUs
 - Online detection of active PU transmitters

Approach: DL (RX-power=CG x TX power); blind estimation

$$\min_{\mathbf{G},\mathbf{P}} \|\mathbf{\Pi} - \mathbf{G}\mathbf{P}\|_F^2 + \lambda_1 \|\mathbf{P}\|_1$$

Payoffs: tracking PU activities; and efficient resource allocation

Outlook: missing data due to limited sensing; distributed robust algorithms

Publications, dissemination, outreach

Journal

- 1. B. Gopalakrishnan, and N.D. Sidiropoulos (2013). Joint Back-Pressure Power Control and Interference Cancellation in Wireless Multi-Hop Networks. *IEEE Trans. on Wireless Communications*. 12 (7), 3484.
- 2. Daniele Angelosante, Georgios B. Giannakis, and Nicholas D. Sidiropoulos (2013). Sparse Parametric Models for Robust Nonstationary Signal Analysis. *IEEE Signal Processing Magazine,* to appear.
- 3. S.-J. Kim, N. Y. Soltani, and G. B. Giannakis (2013). Resource Allocation for OFDMA Cognitive Radios under Channel Uncertainty. *IEEE Transactions on Wireless Communications*. 12 (10).
- 4. A. G. Marqués, E. Dall'Anese, and G. B. Giannakis (2014). Cross-Layer Optimization and Receiver Localization for Cognitive Networks Using Interference Tweets. *IEEE Journal of Selected Topics in Communications,* submitted.

Conference

- 1. Omar Mehanna, Nicholas D. Sidiropoulos, Efthymios Tsakonas (2013). *MODEL-BASED POWER SPECTRUM* SENSING FROM A FEW BITS. 21st European Signal Processing Conference - EUSIPCO 2013. Marrakech, Morocco.
- 2. S.-J. Kim and G. B. Giannakis (2013). *Cognitive Radio Spectrum Prediction using Dictionary Learning*. Globecom Conference. Atlanta, GA.

Plenaries

- 1. IEEE SPAWC 2013, Darmstadt, Germany, June 2013 (Sidiropoulos)
- 2. IFAC Workshop on Distr. Est. & Control in Networked Systems, Santa Barbara, CA, Sept. 2012 (Giannakis)
- 3. ISWCS 2013, Ilmenau, Germany (Giannakis)

