
NSF Org: |
DEB Division Of Environmental Biology |
Recipient: |
|
Initial Amendment Date: | August 15, 2022 |
Latest Amendment Date: | August 15, 2022 |
Award Number: | 2226568 |
Award Instrument: | Standard Grant |
Program Manager: |
Jeremy Wojdak
jwojdak@nsf.gov (703)292-8781 DEB Division Of Environmental Biology BIO Directorate for Biological Sciences |
Start Date: | October 1, 2022 |
End Date: | September 30, 2026 (Estimated) |
Total Intended Award Amount: | $1,199,989.00 |
Total Awarded Amount to Date: | $1,199,989.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
21 N PARK ST STE 6301 MADISON WI US 53715-1218 (608)262-3822 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
21 N PARK ST STE 6301 MADISON WI US 53715-1218 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): |
Population & Community Ecology, Special Initiatives |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.041, 47.074 |
ABSTRACT
Soil represents the second largest pool of carbon on Earth, and soil microbes like fungi and bacteria are key determinants of the amount of carbon sequestered in soil. Because relatively small changes in the amount of carbon sequestered can affect the amount of carbon dioxide in the atmosphere, soil microbes have the potential to mitigate or exacerbate climate change. Current biogeochemical models of carbon sequestration do not adequately incorporate soil microbial activity and this research team will use recently developed sensors to explore the role of soil microbes to carbon dynamics in diverse ecosystems. More specifically, this project will implement novel low-cost and efficient soil sensing platforms to facilitate the rapid estimation of microbial functions from thousands of samples collected across space and time in the continental US to improve predictions of future storage of soil carbon. Additional broader impacts of this project include experiential learning opportunities in soil ecology for high school students across Wisconsin as well as opportunities for young scholars in computer science to develop interactive games about soil sensing, microbial functions, and biogeochemical modeling. This award was made through the "Signals in the Soil (SitS)" solicitation, a collaborative partnership between the National Science Foundation and the United States Department of Agriculture National Institute of Food and Agriculture (USDA NIFA).
This research will transform understanding of dynamic soil processes by defining parsimonious sets of spectral and microbial parameters that can be used to estimate microbial functions associated with soil carbon dynamics in both natural and managed systems. Interdisciplinary approaches to integrate soil sensing, mechanical engineering, metabolomics, microbiology, and biogeochemistry will be used to uncover relationships between novel in situ soil sensing data, soil spectra, and key microbial functions that are associated with soil carbon sequestration. The project will test the hypothesis that combined mid-infrared spectroscopic and novel in situ soil sensing technology can revolutionize understanding of key microbial processes at regional and continental scales and improve next generation biogeochemical models of carbon sequestration. To test this hypothesis, the team will integrate field and soil spectral observations from two long-term data sources, National Ecological Observatory Network sites and a cropping systems trial in Wisconsin, with lab estimations of soil carbon fractions, microbial activity, and metabolite variability to quantify the capacity of soil sensing technology to predict soil microbial functions that drive soil carbon sequestration. In addition, the resulting dataset that will be made available to the research community to address future questions.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.