
NSF Org: |
CNS Division Of Computer and Network Systems |
Recipient: |
|
Initial Amendment Date: | September 14, 2018 |
Latest Amendment Date: | September 14, 2018 |
Award Number: | 1646458 |
Award Instrument: | Standard Grant |
Program Manager: |
David Corman
CNS Division Of Computer and Network Systems CSE Directorate for Computer and Information Science and Engineering |
Start Date: | October 1, 2018 |
End Date: | October 31, 2021 (Estimated) |
Total Intended Award Amount: | $499,409.00 |
Total Awarded Amount to Date: | $499,409.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
526 BRODHEAD AVE BETHLEHEM PA US 18015-3008 (610)758-3021 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
19 Memorial Drive West Bethlehem PA US 18015-3005 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | CPS-Cyber-Physical Systems |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
Modern societies are witnessing the prevalence of a wide assortment of distributed cyber-physical systems (CPS) built upon network infrastructure. International standards for mission-critical CPS applications, such as industrial process control systems and avionics, require their network infrastructure to provide deterministic delay performance. However, the problem of integrating CPS theoretical concepts with real-world network performance remains largely unexplored. This project addresses this open problem so that feedback control CPS in network-challenged spaces can be analyzed formally. The project result can be applied to many other CPS application domains involving real-time control and adaptation, such as vehicular control and communication systems, industrial process control, and network-on-chip systems. Broader impacts include developing publicly-available open-source software for the research community and educating a wide spectrum of audience, from high-school and undergraduate students to academic and industry researchers, by offering seminars and tutorials and organizing a workshop with strategies to maximize the participation of under-represented groups.
The main goal of this project is to establish a systematic approach to the design, characterization, and refinement of network infrastructure in CPS as a breakthrough result for designing and implementing CPS with time-critical tasks. Different from existing studies relying on predefined or presumed device/system specifications, the new approach balances theoretical analyses with empirical evaluations by exploring network-calculus-based modeling of networking devices and traffic sources from measurements. This project also focuses on non-feedforward networks, in contrast to state-of-the-art methods targeting feedforward networks, and includes investigation of compositional, algebraic, and optimization-based approaches to delay performance analysis of non-feedforward networks and research on identification and mitigation of delay performance bottlenecks in networked CPS. This project will use PLC (Programmable Logic Controller)-based industrial automation systems for case studies, not only demonstrating the usage and capabilities of the systematic approach but also providing reference implementation of related algorithms.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.