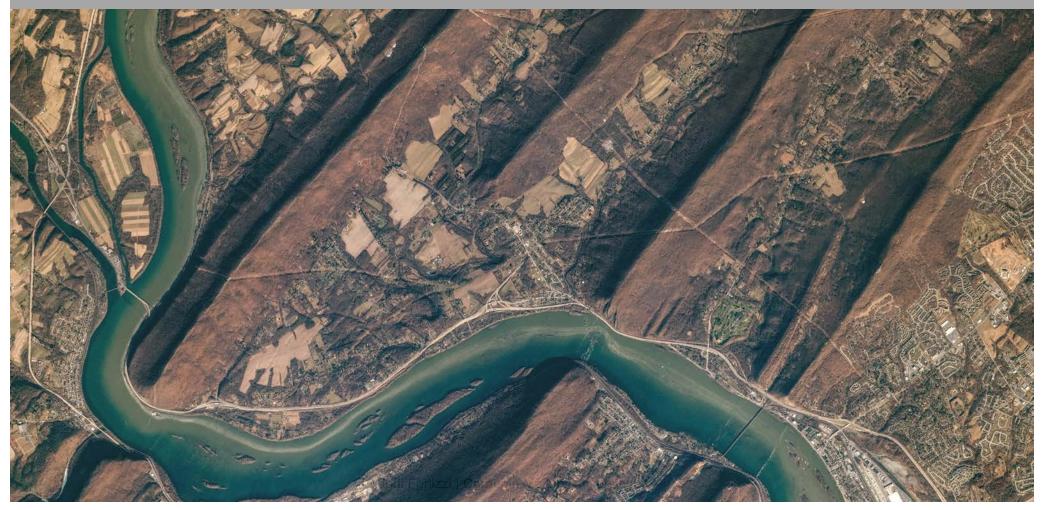
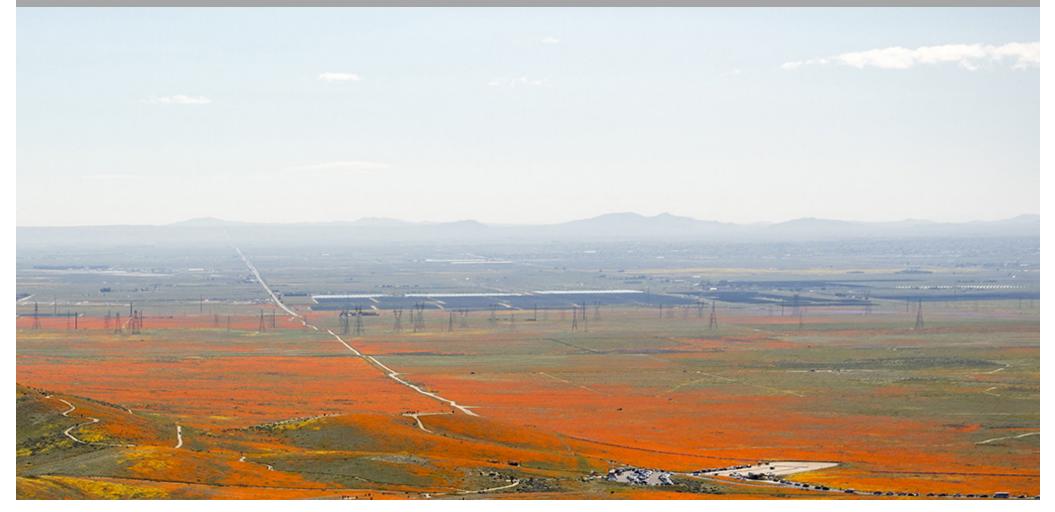
The role of design in socially responsible Al


Jodi Forlizzi, Herbert A. Simon Professor HCII, Carnegie Mellon University NSF CISE Talk | April 4, 2024

Who I am and why I'm here

Design as an accidental vagrant

Computing technologies are changing the world at a rapid.


Jodi Forlizzi Carnegie Mellon University

=

pace.

Sea change in technology

Data is the new oil, the new electricity

Blackmountainsand.com

Al is more profound than fire

Data, ML and Al are affecting

CA92E80EE.99

Reduce recidivism rates

Improve educational outcomes

Prediction and prevention of disease

Replicate identity using speech and video

Multi-ID and Multi-Style Synthesis

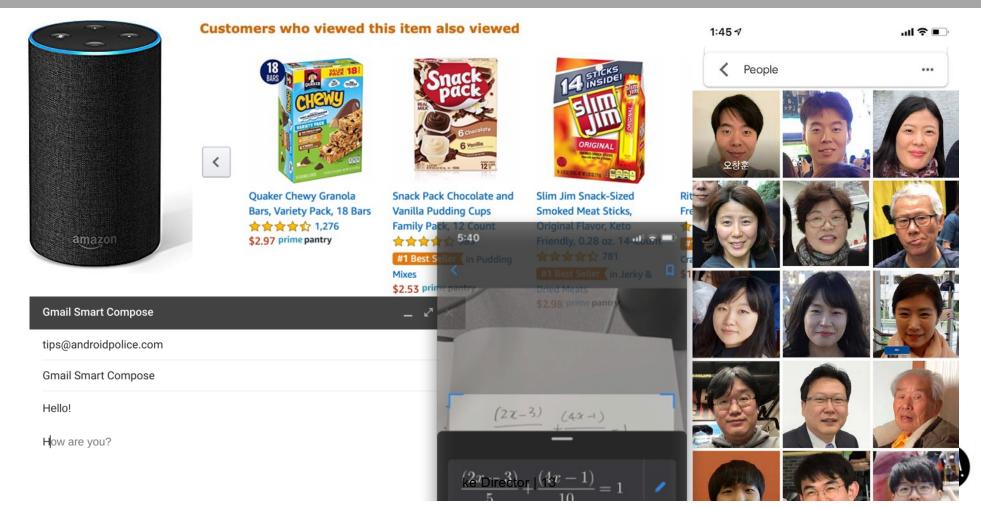
left ID background ID right

Stylized Synthesis

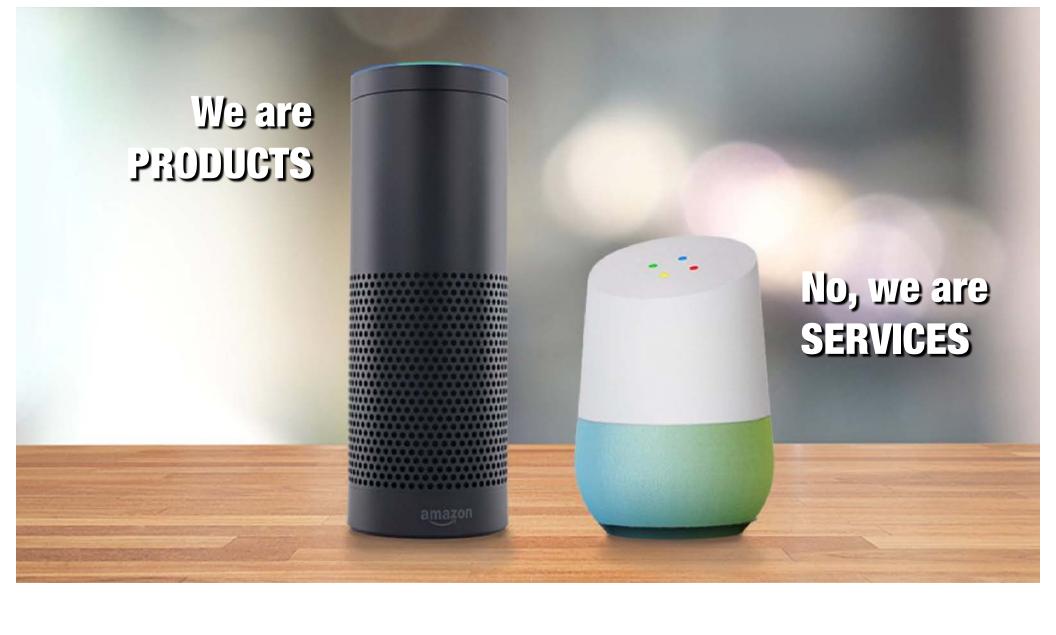
Realistic Synthesis

J<mark>odi</mark> Forl<mark>izzi | Carnegie Mellon University |</mark> 12

Novel View Synthesis



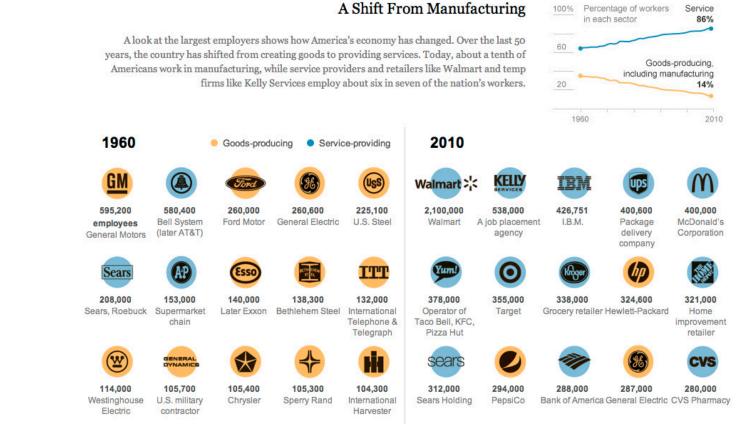
Non-Portrait Synthesis


Data, ML and AI impacts what we design

What are we designing?

CA92EBDEE90

Products: A thing that is owned through the transfer of value

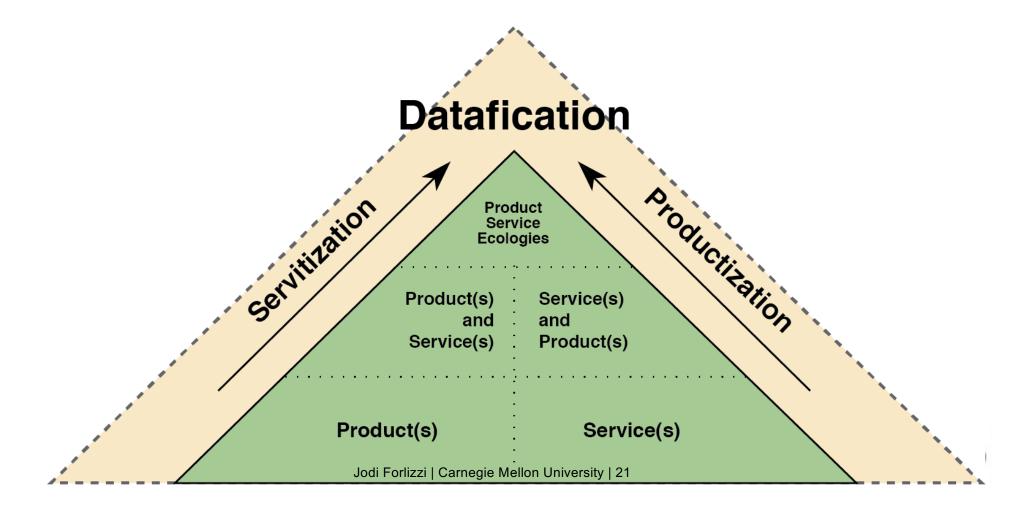


Services: Enacted to co-create value between provider and customer

Rise of a service economy worldwide


Benefits of a multistakeholder view

- Anyone with a stake in the service design project
- Anyone who is impacted by the service design outcomes
- Concepts of serving vs. helping or fixing [Remen]



Products and services are blending

Products, services, and data are blending

Invention vs. innovation

Invention vs. Innovation

1963 Philips cassette recorder Mechanism and capabilities

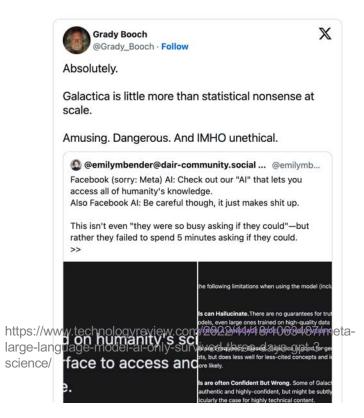
Innovation: Recognizing and giving form and value

Jodi Forlizzi | Carnegie Mellon University | 24

An innovation gap

Most Al Products Fail [Harvard Business Review, 2023]

85% of Al Implementations Will Fail By 2022 [Gartner, 2021]


Al Has A Poor Track Record [Industry Week, 2022]

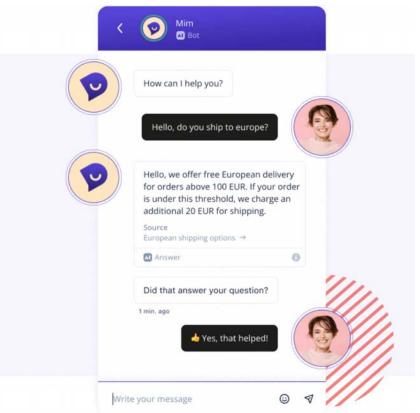
Model performance

Featured Topics Newsletters

were sharing its biased and incorrect results on social media.

Teams cannot achieve the model performance they need to have a good enough AI product

arnegie Mellon University | 27


No service value

The system does not generate enough value to the company to make it worthwhile

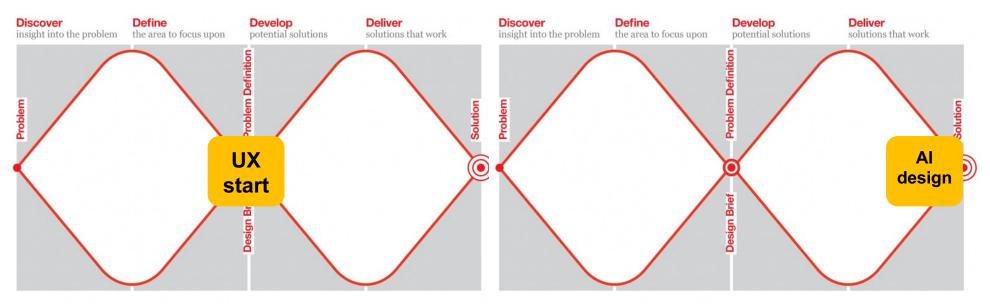
Not desirable to the intended customer

https://watermelon.ai/blog/best-ai-chatbots-customer-service/

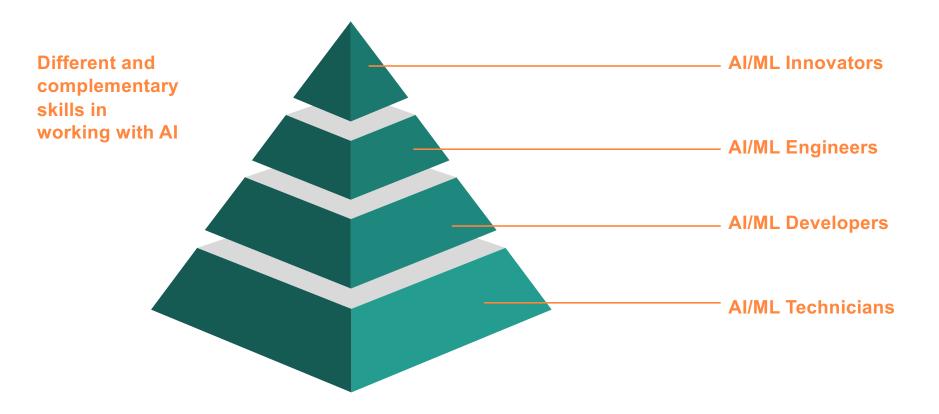
The system does not generate customer or user value and is abandoned

Ethical risks

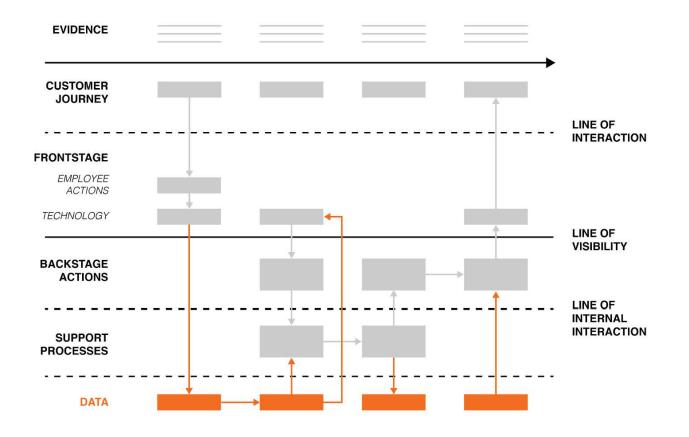
https://journals.sagepub.com/doi/10.1177/20539517231215360


The system may have ethical issues with data privacy, algorithmic bias, or some other type of unintended harm

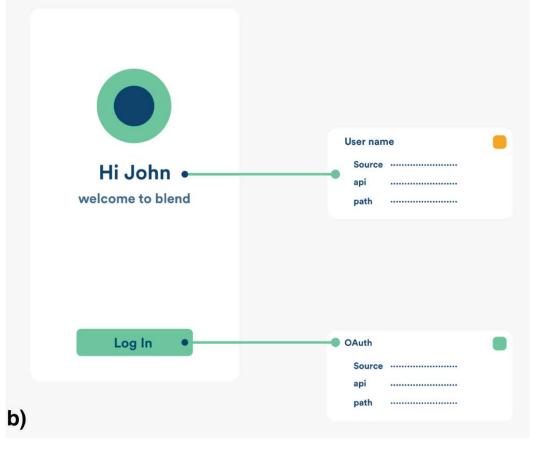
New methods and processes are needed to successfully and responsibly innovate with Al.


Traditional design processes may not apply

https://uxdesign.cc/beyond-the-double-diamond-thinking-about-a-better-design-process-model-de4fdb902cf

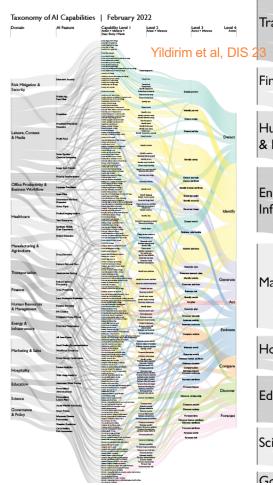


An AI Product Team is multifaceted



Service blueprinting: Add a data layer

UX Wireframing: Add a data source


Matchmaking

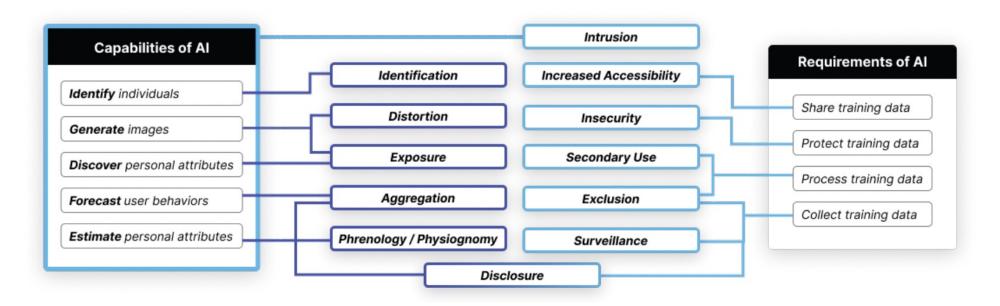
Matchmaking for AI-IoT Applications

Specific Capability	Domain and/or Activity	Customer	Application
3	Home improvement	Homeowners	smart lighting control system that adjusts the intensity and color temperature of indoor lighting based on the natural light available
	Energy	Green (solar) energy	use light sensors to determine the best locations to place solar panels based on measures of light intensity patterns (varying by location and time of day)
	Technology	Devices	enhanced device tracking using light sensors to detect whether item is in a small and/or dark location
	Health	Skincare	application that measures light intensity outside to recommend SPF levels and other skincare tips
	Agriculture	Farmers	use light sensor data to analyze light intensity patterns in order to optimize crop growth/health in greenhouse environments
6 RADAR sensors measure distance and shape. Inference capabilities include obstacle detection, object recognition, motion detection, activity recognition	Security and policing	Security systems	security system using RADAR sensors to alert for/track movements within a certain area of a building or home
	Accessibility	Blind people	application using RADAR sensors and AI algorithms to assist visually impaired individuals in navigating their surroundings (identify obstacles or other moving objects)
	Energy	Building/home owners	use RADAR sensing to detect the presence of people in a room and turn on lights or other electric devices as needed (optimize energy use)
	Health	Parents	baby monitor that can update or alert parent when baby's movement is detected using RADAR sensing
	Transportation	Autonomous vehicles	combine RADAR sensing with machine learning algorithms to detect obstacles, recognize objects, and navigate safely in various environments
	Transportation s	Transportation departments (traffic regulation)	Use sensors to infer about weather and modify control of traffic flow accordingly (EX if detects that a storm is coming, start dispersing traffic away from highways which can get backed up)
		Personal vehicles	Help maintain driver's ideal environments by adapting from outside conditions (like how you can automatically adjust seats/mirrors per person, adjust conditions instead)
	Agriculture	Greenhouse industry	Greenhouse environmental control—use AI to automatically adjust environment to adapt for optimal plant conditions based on sensor readings
1.4		Cran forming	Datast surrounding humiditu/temperature and release certain

10

AI taxonomy

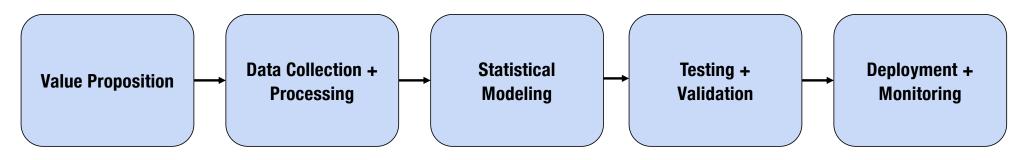
			Estimate consumption	
	Robotic Pick and Place	Identify document type in image		
		Compare game moves by game impact		
		Identify skills in text		
		Discover medical anomaly in image	Identify text attribute	
ransportation	Autonomous Parking	Generate protein structure of drug	identity text attribute	
ansportation	Autonomous Parking	Identify competence in text		
		Generate protein interaction of drug		
		Identify drivers' intent to park in vehicle telemetry		
		Generate physio-chemical reaction of drug	Identify document attribute	
	Robotic Invoice	Identify specialization in text		
	Processing	Identify object in image	Generate chemical attribute	
	riocessing	Generate bioactivity of drug		
1111 1111				
nance	Crop Monitoring	Identify document structure in image	Compare phrases	
nance	erop i tonicornig	Compare responses to query fit	Generate sentence	
		Generate motion and grasping path to object		
		Identify objects in sensor stream	Identify user intent	
	Lane Departure Prediction	Identify driver's intent to depart in vehicle telemetry	Identify and a susception	
		Act motion and grasping path to pick by minimum m	oves Identify audio anomaly	
		Discover product defect in image	Generate motion plan	
uman Resources		Generate motion path to parking space		
	Resume Screening	Detect machine sound in audio	Identify object	
Managamont		Estimate promise of drug		
Management		Detect human presence in sensor stream	Generate action plan	
-	HR Chatbot	Act motion path to park by minimum moves	Contracto netron prant	
		Detect room objects in depth map	Act motion plan	
	Navierties Deves Disease		Estimate enteres	
	Navigation Route Planner	Detect virtual-physical collision in AR	Estimate success	
		Estimate location and orientation of object	Discover visual anomaly	
		Estimate toxicity of drug		
nergy &		Identify subject in user query	Compare responses	
	Predictive Maintenance	Detect room in depth map	Estimate action risk	
frastructure	i redicarto i fantecinanco	Estimate growth of crop	Detect animal	
in astructure		Identify content in web page	Estimate world activity	
		Estimate collision likelihood of lane departure		
		Estimate size of parking space	Estimate object size	
		Discover relationships between drugs and treatment	ourcomes	
	AR Item Viewer	Discover new uses of drug in drug-treatment relationships		
		Estimate lane departure likelihood of vehicle		
		Identify machine breakdown in audio	Estimate system activity	
			Estimate object orientation	
	Stock Trading Recommendations	Generate response to user query		
	Stock frading Recommendations	Estimate lane position of vehicle	Estimate chemical attribute	
		Compare resumes by job fit	Identify animal	
larketing & Sales	Workforce Scheduling	Forecast yield of crops		
0		Forecast yield impact of resource plans	Compare documents	
		Estimate street and direction of vehicle		
		Identify room objects in depth map	Compare action plans	
	Home Energy Optimization	Identify context in text	Identify routine	
		Estimate travel time of route		
		Compare routes by driver preferences	Estimate object position	
		Identify user intent in text	Generate schedule	
		Estimate breakdown likelihood of machine	Estimate system risk	
	Review Analytics		Estimate spatial size	
ospitality		Generate schedule for employees	Generate space	
ospitality		Identify person's routine in temperatures		
		Identify style in text	Estimate activity duration	
	Web Usage Analytics	Generate temperature plan for user	Forecast financial outcome	
		Forecast traffic impact of route	Estimate event duration	
ducation		Identify organization in text	Estimate object location	
		Estimate object size in room	Estimate financial impact	
	Automated Essay Scoring	Identify words in user query	Forecast financial impact	
		Generate room with virtual and physical objects		
		Estimate breakdown duration of machine	Generate learning plan	
	Personalized	Identify coherence in text	Estimate preference	
	Advertisements	Estimate size of room	Estimate priority	
		Estimate breakdown cost of machine	Forecast time impact	
cience		Detect animal in image		
	Personalized		Discover correlations	
	Lesson Plans	Estimate object location in room	Discover correlations	
	Lesson Plans	Estimate priority of cases		
		Discover relationships between news and stock price	Compare items	
	Jodi Foxizzinani Crontoragie Mello	n Forpeass repair impact to machine 37		
	COULD OWARMENT AND ALL INCLUSION		Estimate learning	
		Identify animals in image	Estimate infections	
overnance	in . D	Enverses breakdown point of machine		


Generate text Generate numeric data Identify activity Generate Generate attribute Estimate risk Identify world Act Act plan Generate plan Discover anomaly Estimate activity Estimate outcome Estimate Compare entities Estimate world Generate world Estimate human attribute Estimate duration Compare Compare plans Estimate impact Forecast outcome Estimate attribute Forecast impact Discover Discover relationship Compare people

Discover activity

Al capabilities act as design patterns

Capability + synonyms	Definition	Examples
Estimate Rate, Grade, Measure, Assess	Infer a value (ex: position, size, duration, cost, impact) related to the current situation. This is about making an inference about now.	Estimate driving time (navigation maps) Estimate chances this is spam (email) Estimate direction sound came from (smart speaker)
Forecast Predict, Guess, Speculate	Infer a value that will be true or some attribute or impact of a future situation that may or may not happen (stock price, sales, weather, chance of something being true).	Forecast best time to buy stock (financial planner) Forecast tomorrow's weather (weather app) Forecast max price for my house (real estate app)
Compare Rank, Order, Find Best, Find Fastest, Find Cheapest, Recommend	Compare a collection of the same things based on a metric, such as comparing a set of social media ads based on the likelihood a user might click. Compare allows services to select, rank, or curate a collection of things.	Compare items by likelihood of purchase (online store) Compare posts by likely engagement (social media) Compare movies by likelihood of watching (media)
Detect Monitor, Sense, Notice, Classify, Discriminate	Notice if a specific kind of a thing is in a data set or if it shows up in a sensor stream.	Detect human voice in audio (smart speaker) Detect face in image (camera) Detect step in motion sensor stream (smartwatch)
Identify Recognize, Discern, Find, Classify, Perceive	Notice if a specific item or class of items shows up in a set of like items.	Identify if message is spam (email) Identify if Steve's face (security) Identify the type of cancer (medical imaging)
Discover Extract, Notice, Organize, Cluster, Group, Connect, Reveal	Analyze a dataset and notice a pattern that allows clustering of similar things or identification of outlying entitites.	Discover how people use this site (usage mining) Discover unusual bank transactions (fraud detection) Discover relationships between drugs and disease (drug discovery)
Generate Make, Compose, Construct, Author	Generate something new (message, image, sound) based on knowledge of similar things.	Generate chat response (chat agent) Generate detail in image (photo retouching) Generate synthetic medical records (medical data)
Act Do, Execute, Play, Go, Fight, Learn, Operate	Execute a strategy to achieve a specific goal and continue to update the strategy based on advance towards the goal. Jodi Forlizzi Carnegie Mellon University 38	Act: Park the car (self park) Act: Play poker (gambling agent) Act: Fly drone to location (drone pilot)


Taxonomy of privacy risks

Lee et al, CHI24

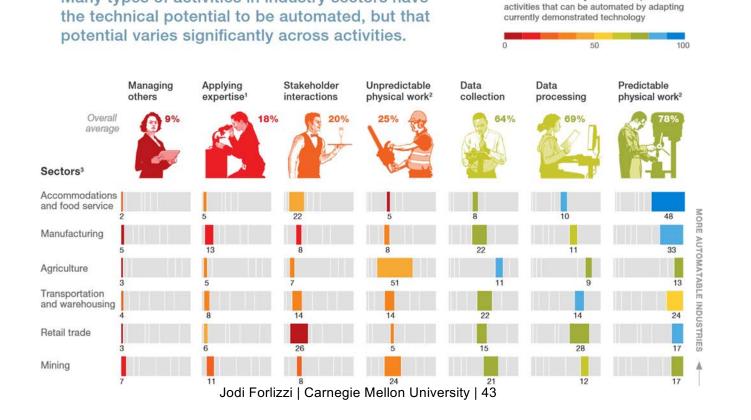
Tools for governance in the AI pipeline

- Organizational leaders (e.g., executives, team leaders)
- Designers (e.g., project managers, UX and AI designers)
- Developers (e.g., model engineers, data scientists)
- Deployers (e.g., evaluators, system integrators)
- Operators (e.g., tech support)
- End-users (e.g., front-line workers)
- Impacted communities

Stage/Stakeholder Matrix

Issues / Tools	Value Proposition	Data Processing	Statistical Modeling	Testing + Validation	Deployment + Monitoring	
Leaders						
Designers						
Developers						
Deployers						
End-users						
Impacted communities						
lodi Forlizzi Carnegia Mellon University 41						

Al and automation in the state test hospitality industry



Hospitality in danger of automation

Many types of activities in industry sectors have

The technical potential for automation in the US

Technical feasibility: % of time spent on

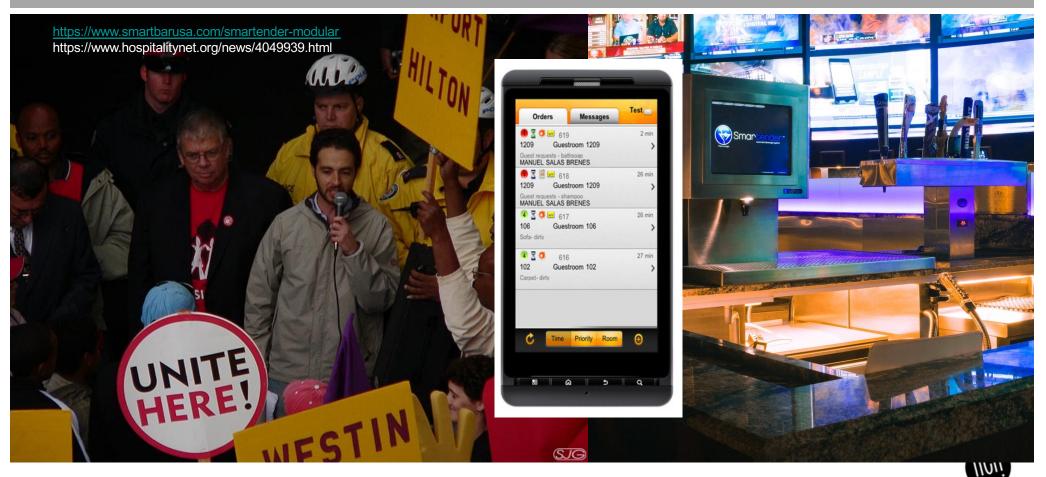
Robots and automation in the hospitality industry

=



Meet Flippy, Chippy, Sally, and Sippy

=



Preparing workers for a future of automation

Carnegie Mellon University

Jodi Forlizzi Sarah Fox Franchesca Spektor Human-Computer Interaction Institute

Ben Begleiter Edward Wytkind

Hye Jin Rho Dasom Jang School of Human Resources and Labor Relations

Christine Riordan Yeaseul Hur Patricia Tabarani School of Labor and Employment Relations

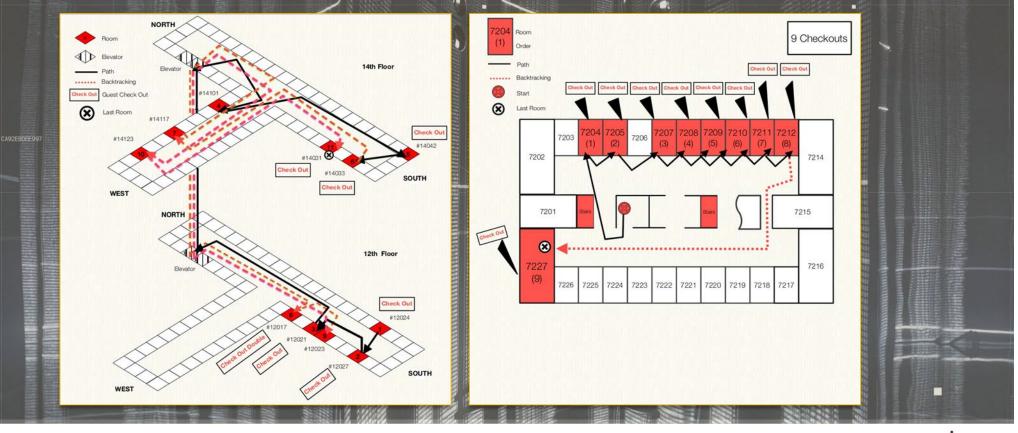
Deborah Figart Ellen Mutari Department of Economics

Betsy Stringam School of Hotel, Restaurant, and Tourism Management

Hospitality, invisible work

- A physically demanding job done by women who are largely immigrants and women of color
- As employers move from daily housekeeping, their work is becoming harder

Digitializing hospitality



- Deprives housekeepers of autonomy
- Enables faster communication between housekeepers and other operations — managers, engineering, etc.

Irrational room sequencing and extreme workload

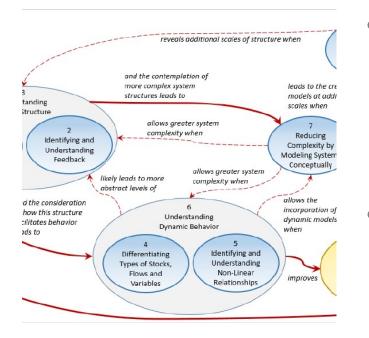
=

Research Roadmap

Workshops with union workers

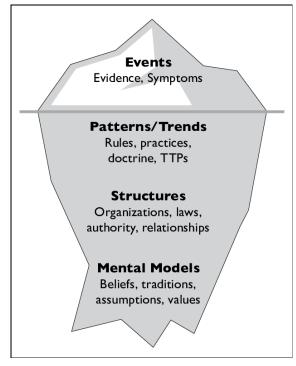
- Conducted online with housekeepers, bartenders and cocktail servers
- Focus on their work, what has changed with automation, and what they prioritize and value

Impact of automation on worker well-being


- Social science literature on automation traditionally focused on job displacement
- Recent literature highlights complexity, especially in service sector
 - Specific skills challenging to automate
 - Work processes and job content change

Enter design research...

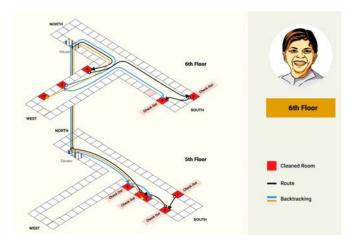
Systems design and systems thinking



https://ackoffcenter.blogs.com/ackoff_center_weblog/2 024/01/a-definition-of-systems-thinking-a-systemsapproach-.html

- A system is not the sum of its parts but the product of interactions of those parts [Ackoff]
- Designing systems in complex situations, not creative problem solving, or design thinking [Nelson]

Systemic design and "the iceberg"

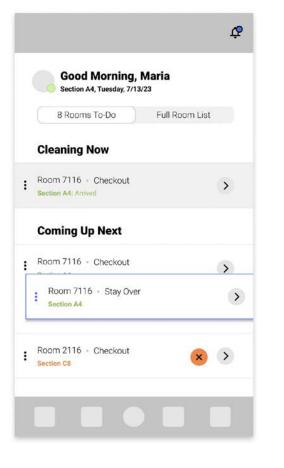


Donella Meadows, Iceberg Model

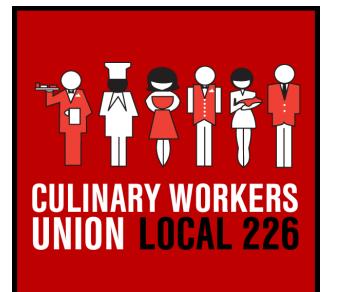
- Analyze current state
- Understand the system around the problematic situation
- Problem, behaviors, systems and structures, what cognitive models are driving these

Need to surface voices of multiple stakeholders

- Talking to GRAs gave an individual perspective
- Talking to managers gave an organizational perspective
- Talking to the manufacturer of the software revealed additional (conflicting) perspectives
- Talking to hotel management revealed additional perspectives



A case of reframing


Participatory prototyping sessions

- Workshops and interviews to understand how AMs impact daily work
- Researchers collaborate with workers to sketch new designs
- Worker participation increases self-efficacy and transparency and reduces workload

Effect of self-sequencing

- Las Vegas Culinary Union Local 226
- Gather issues and report to union stewards asking for the ability to self-sequence rooms

Digital and AI literacy study



https://www.reviewjournal.com/local/education/

- First of a kind collaboration between a culinary training academy, our research team, and a software developer
- Explore modifications to software design to enable self-sequencing, digital literacy, and AI literacy training

Systemic design and the AFL-CIO

Systemic design and the AFL-CIO

- AFL-CIO Tech Institute: Bringing Worker Voice into the Innovation Process
 - Improve technology development through worker engagement and collaboration, provide equitable access to jobs and career paths
 - Bring worker voice and labor organizations into the innovation process
 - Create a model of labor-academic engagement across sectors and communities

Systemic design and the AFL-CIO

THE WHITE HOUSE

Administration Priorities The Record Briefing Room Español

OCTOBER 30, 2023

Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence

BRIEFING ROOM > PRESIDENTIAL ACTIONS

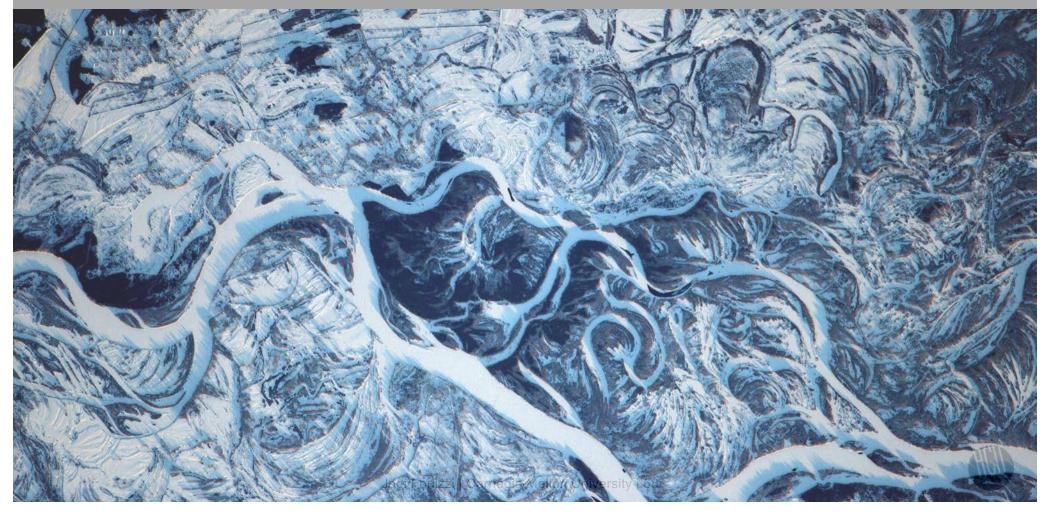
By the authority vested in me as President by the Constitution and the laws of the United States of America, it is hereby ordered as follows:

Jodi Forlizzi | Carnegie Mellon University | 65

Q

Final points

- Designers are moving from product to service and systems design.
- Products and services are blending and are data animated.
- Designing with AI and ML is different.
- The role of design is broadening in Al research and design processes.



Final points

- We need a broader, systemic investigation of technology in service domains.
- Reframing, getting to the assumption behind the assumption, is critical.

In closing...

Thanks to my students and collaborators.

This work was partially funded by NSF CHS-Small 270210, NSF SaTC CORE 2126066, NSF FTW-HTF-R 2026537, and the Block Center.

The role of design in socially responsible Al

Jodi Forlizzi, Herbert A. Simon Professor HCII, Carnegie Mellon University NSF CISE Talk | April 4, 2024

