
A THEORETICAL VIEW OF
DISTRIBUTED SYSTEMS

Nancy Lynch, MIT EECS, CSAIL
National Science Foundation, April 1, 2021

Theory for Distributed Systems
• We have worked on theory for distributed systems, trying to

understand (mathematically) their capabilities and limitations.
• This has included:

• Defining abstract, mathematical models for problems solved by
distributed systems, and for the algorithms used to solve them.

• Developing new algorithms.
• Producing rigorous proofs, of correctness, performance, fault-tolerance.
• Proving impossibility results and lower bounds, expressing inherent

limitations of distributed systems for solving problems.
• Developing foundations for modeling, analyzing distributed systems.

• Kinds of systems:
• Distributed data-management systems.
• Wired, wireless communication systems.
• Biological systems: Insect colonies, developmental biology, brains.

This talk:

1. Algorithms for Traditional Distributed
Systems

2. Impossibility Results
3. Foundations
4. Algorithms for New Distributed Systems

1. Algorithms for Traditional Distributed
Systems

• Mutual exclusion in shared-memory systems, resource
allocation: Fischer, Burns,…late 70s and early 80s.

• Dolev, Lynch, Pinter, Stark, Weihl. Reaching approximate
agreement in the presence of faults. JACM,1986.

• Lundelius, Lynch. A new fault-tolerant algorithm for clock
synchronization. Information and Computation,1988.

• Dwork, Lynch, Stockmeyer. Consensus in the presence
of partial synchrony. JACM,1988. Dijkstra Prize, 2007.

1A. Dwork, Lynch, Stockmeyer [DLS]
“This paper introduces a number of practically motivated
partial synchrony models that lie between the completely
synchronous and the completely asynchronous models and in
which consensus is solvable.
It gave practitioners the right tool for building fault-tolerant
systems and contributed to the understanding that safety can
be maintained at all times, despite the impossibility of
consensus, and progress is facilitated during periods of
stability.
These are the pillars on which every fault-tolerant system has
been built for two decades. This includes academic projects,
as well as real-life data centers, such as the Google file
system.”

Distributed consensus
• Processors in a distributed network must agree on a value

in some set 𝑉𝑉.
• Each processor starts with an initial value in 𝑉𝑉, and they

must agree on a value in 𝑉𝑉.
• But some of the processors might be faulty (stopping, or

Byzantine).
• Agreement: All non-faulty processors agree.
• Validity: If all processors have the same initial value 𝑣𝑣, then
𝑣𝑣 is the only allowed decision for a non-faulty processor.

• Problem arose originally as:
• The Database Commit problem [Gray 78].
• The Byzantine Agreement problem (for aircraft altimeter readings)

[Pease, Shostak, Lamport 80].

[DLS] contributions
• Considers a variety of partial synchrony models, with

different processor rate and message-delay assumptions.
• Considers a variety of failure models: stopping failures,

Byzantine failures, Byzantine failure with authentication,
sending and receiving omission failures,…

• Gives algorithms to reach agreement in all cases,
guaranteeing agreement and validity always, and
termination if/when the system’s behavior stabilizes.

• Key algorithmic ideas:
• Different processors try to take charge of reaching agreement.
• Rotating coordinator.
• Must reconcile to avoid contradictory decisions.

[DLS] contributions
• E.g., consider synchronous rounds, stopping failures.
• Messages may be lost, but after some Global Stabilization Time, all

messages between non-faulty processors are delivered.
• 4-round phases, coordinator 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 𝑘𝑘 mod 𝑛𝑛, at phase 𝑘𝑘.
• A processor may lock a value 𝑣𝑣 with phase number 𝑘𝑘, meaning that

it thinks that the coordinator might decide 𝑣𝑣 at phase 𝑘𝑘.
• Phase 𝑘𝑘, coordinator 𝑝𝑝𝑖𝑖:

• Round 1: Each processor 𝑝𝑝𝑗𝑗 sends “acceptable” decision values (known to
be someone’s initial value, 𝑝𝑝𝑗𝑗 doesn’t hold a lock on a different value) to 𝑝𝑝𝑖𝑖;
𝑝𝑝𝑖𝑖 tries to find a value 𝑣𝑣 to propose, acceptable to a majority of processors.

• Round 2: 𝑝𝑝𝑖𝑖 broadcasts proposed value 𝑣𝑣, recipients lock (𝑣𝑣, 𝑘𝑘).
• Round 3: Those who locked (𝑣𝑣, 𝑘𝑘) send acks to 𝑝𝑝𝑖𝑖; if 𝑝𝑝𝑖𝑖 receives a majority

of acks, decides 𝑣𝑣.
• Round 4: Cleanup, exchange lock information, release older locks.

[DLS] contributions
• Phase 𝑘𝑘, coordinator 𝑝𝑝𝑖𝑖:

• Round 1: Send acceptable decision values to 𝑝𝑝𝑖𝑖; 𝑝𝑝𝑖𝑖 tries to pick a
value 𝑣𝑣 to propose, acceptable to a majority of processors.

• Round 2: 𝑝𝑝𝑖𝑖 broadcasts proposed value 𝑣𝑣, recipients lock (𝑣𝑣, 𝑘𝑘).
• Round 3: Those who locked (𝑣𝑣, 𝑘𝑘) send acks to 𝑝𝑝𝑖𝑖; if 𝑝𝑝𝑖𝑖 receives

majority of acks, decides 𝑣𝑣.
• Round 4: Cleanup, exchange lock information, release older locks.

• Some ideas inspired by [Skeen 3-phase commit].
• [Paxos] consensus protocol uses similar ideas.

𝑖𝑖

Part 1: Algorithms for Traditional
Distributed Systems

1A: Consensus with partial synchrony [DLS]
1B: Concurrency control algorithms for
nested transactions
1C: Distributed shared memory
1D: Reconfigurable atomic memory

1B. Concurrency Control Algorithms for
Nested Transactions

• Lynch, Merritt, Weihl, Fekete. Atomic transactions in
concurrent/distributed Systems. Morgan Kaufmann, 1993.

• Background:
• Transactions, concurrency control: [Gray], [Bernstein, Goodman].
• Extensions to nested transactions: [Liskov]
• Systems papers, implementations, little theory.

• Our contributions:
• Modeled nested transaction requirements

and algorithms mathematically.
• Generalized existing algorithms.
• Proved correctness.

• Many papers, book.

𝑇𝑇λ

𝑇𝑇00

𝑇𝑇1𝑇𝑇0

𝑇𝑇010

𝑇𝑇10𝑇𝑇01

𝑇𝑇000 𝑇𝑇100𝑇𝑇011

Concurrency Control Algorithms for
Nested Transactions

• General theory for nested transactions, including a general
Atomicity Theorem that provides a compositional method
for proving correctness of concurrency control algorithms

• Lock-based algorithms.
• Timestamp-based algorithms.
• Hybrid locking/timestamp algorithms.
• Optimistic concurrency control
algorithms.

• Orphan management algorithms.
• Replicated data algorithms.
• All rigorously, in terms of our I/O
automata modeling framework.

1C. Distributed Shared Memory

• Fekete, Kaashoek, Lynch. Implementing
sequentially consistent shared objects using
broadcast and point-to-point communication.
ICDCS, 1995. JACM, 1998.

[Fekete, Kaashoek, Lynch, 1988]
• Considered an algorithm to implement sequentially consistent

read/update shared memory, using basic broadcast and point-to-
point communication services, as in Amoeba.

• Based on the Orca system [Bal, Kaashoek,Tanenbaum 93], for
writing applications for clusters of workstations.

• Orca defines an abstract Multicast Channel,
with strong ordering and causality properties.

• Implements sequentially consistent memory
over any Multicast Channel, using a partial
replication strategy (read any copy, update
all copies).

• Implements this Channel over basic bcast
and point-to-point communication services,
using a sequence-number-based protocol.

Seq. Cons.
Memory Impl.

Multicast
Channel Impl.

Bcast Pt-Pt

Client Client Client

Mcast Channel

[FKL] contributions
• We specified the message delivery and ordering

requirements of the Multicast Channel mathematically.
• Defined a sequence-number-based algorithm to implement

the Multicast Channel over the basic comm services.
• We tried to prove the algorithm correct.
• But, we discovered an algorithmic error

in the Orca implementation:
• Didn’t piggyback certain needed

sequence numbers on certain
response messages!

• Error was fixed, in the algorithm and in
the actual system.

• Then we completed the proof.

Seq. Cons.
Memory Impl.

Multicast
Channel Impl.

Bcast Pt-Pt

Client Client Client

Mcast Channel

[FKL] contributions
• We defined a sequence-number-based algorithm to

implement the Multicast Channel over the basic
communication services, proved it correct.

• We defined a partial-replication
algorithm to implement sequentially
consistent memory over the Multicast
Channel, generalizing the Orca
algorithm.

• Developed a new proof technique for
proving sequential consistency.

• Using I/O automata, composition,
abstraction.

Seq. Cons.
Memory Impl.

Multicast
Channel Impl.

Bcast Pt-Pt

Client Client Client

Mcast Channel

Summary: System modeling
and proofs
• Using I/O-automata-based formal

methods, we modeled and verified many
distributed data-management systems,
especially those with strong consistency
requirements.

• Specified required properties formally.
• Defined abstract versions of system

algorithms.
• Clarified ambiguities.
• Proved the algorithms correct.
• Found and fixed some errors.

Seq. Cons.
Memory Impl.

Multicast
Channel Impl.

Bcast Pt-Pt

Client Client Client

Mcast Channel

1D. Reconfigurable Atomic Memory

• Lynch, Shvartsman. RAMBO: A reconfigurable atomic
memory service for dynamic networks. DISC, 2002.

• Gilbert, Lynch, Shvartsman. RAMBO II: Rapidly
Reconfigurable Atomic Memory for Dynamic Networks.
DSN, 2003.

• Gilbert, Lynch, Shvartsman.
RAMBO: A robust, reconfigurable
atomic memory service for
dynamic networks. Distributed
Computing, 2010.

Goal
• Implement atomic Read/Write shared memory in a dynamic

network setting.
• Atomic memory “looks like” centralized shared memory.
• Participants may join, leave, fail during computation.
• Mobile networks, peer-to-peer networks.

• High availability, low latency.
• Atomicity in spite of asynchrony and change.
• Good performance under limits on asynchrony and change.
• Applications:

• Soldiers in a military operation.
• First responders in a natural disaster.

Atomic Memory in Static Networks
[Attiya, Bar-Noy, Dolev 95]
• Read-quorums, write-quorums of processors; every
read-quorum intersects every write-quorum.

• Replicate objects everywhere, with version tags.
• To Read: Contact a read-quorum, determine the latest
version, propagate it to a write-quorum, return it.

• To Write: Contact a read-quorum, determine the latest
tag, choose a larger tag, write (tag,value) to a write-
quorum.

• Operations proceed concurrently, interleaving at fine
granularity; still guarantees atomicity.

RAMBO algorithm

• = Reconfigurable Atomic Memory for Basic Objects
• Uses configurations, each with:

• members, a set of processors,
• read-quorums, write-quorums

• Objects are replicated at all members of 𝐶𝐶.
• Reads and Writes access quorums of 𝐶𝐶, as in ABD;
handles small, transient changes.

• To handle larger, more permanent changes,
reconfigure to a new configuration 𝐶𝐶𝐶, moving object
copies to members of 𝐶𝐶𝐶.

RAMBO

Algorithm structure

• Main algorithm + Reconfiguration
service

• Recon service:
• Supplies a consistent sequence of configurations.
• Triggered by external reconfiguration requests.

• Main algorithm:
• Handles reading and writing of objects.
• Removes old configurations, in the background.
• Reads/Writes use all currently-active configurations.

ReconNet

RAMBO

Recon

Reads and Writes
• 2-phase protocol:
• Phase 1: Collect object info (values, tags) from read-
quorums of all known active configurations.

• Phase 2: Propagate latest object info to write-quorums
of all known active configurations.

• Many Read/Write operations may execute concurrently.
• Quorum intersection properties guarantee atomicity.
• Each phase terminates by a fixed-point condition,
involving a quorum from each known active
configuration.

Removing old configurations
• “Garbage-collect” them in the background.
• Another two-phase protocol:
• Phase 1: For each old configuration 𝐶𝐶:

• Inform a write-quorum of 𝐶𝐶 about the new
configuration.

• Collect object information from a read-quorum of 𝐶𝐶.
• Phase 2:

• Propagate latest object information to a write-quorum
of the new configuration.

• GC proceeds concurrently with Reads and Writes,
interleaving at fine granularity; still guarantees atomicity.

Implementing Recon
• Uses consensus to determine successive configurations.
• Members of old configuration can propose new
configuration.

• Proposals reconciled using consensus.
• Consensus is heavyweight, but:

• Used only for (infrequent)
reconfigurations.

• Does not delay
Read/Write operations. Consensus

Recon

Net

Implementing consensus

• Models and proofs:
• Using Timed I/O Automata.
• Partial-order method for proving atomicity.

decide(v) init(v)
init(v)

Consensus

• Use DLS, or Paxos.
• Agreement, validity guaranteed always.
• Termination guaranteed when underlying system
stabilizes.

This talk:

1. Algorithms for Traditional Distributed
Systems

2. Impossibility Results
3. Foundations
4. Algorithms for New Distributed Systems

Part 2: Impossibility Results
• Distributed algorithms have strong inherent limitations,

because they must work in difficult settings:
• Local knowledge only.
• Uncertainties, about remote inputs, timing, failures.

• Theoretical models enable actual proofs of such limitations.
• [Cremers, Hibbard 76]:

• Shared-memory, Boolean shared variables, arbitrary operations.
• Fair Mutual Exclusion: Every process(or) that requests the

resource eventually gets it.
• Unsolvable for two processes with one Boolean

shared variable. 𝑝𝑝1 𝑝𝑝2

𝑥𝑥

Part 2: Impossibility Results

2A: Lower bound on number of shared
variables for mutual exclusion
2B: Lower bound on the time to reach
consensus, in synchronous systems
2C: Impossibility of distributed consensus
with one faulty process, in asynchronous
systems
2D: The CAP theorem

Impossibility Results for Mutual
Exclusion

• Burns, Jackson, Lynch, Fischer, Peterson. Data
requirements for implementation of 𝑛𝑛-process mutual
exclusion using a single shared variable. JACM, 1982.

• Burns, Lynch. Bounds on shared memory for mutual
exclusion. Information and Computation, 1993 (actually
proved in ~1980).

𝑝𝑝1 𝑝𝑝2

𝑥𝑥1

𝑝𝑝𝑛𝑛

𝑥𝑥2

2A. Number of Shared Variables for Mutual
Exclusion [Burns, Lynch 93]

• Theorem: Mutual exclusion for 𝑛𝑛 processes, using read/write
shared memory, requires ≥ 𝑛𝑛 shared variables.

• Even if:
• Fairness is not required, just progress.
• Every process can read and write all variables.
• Variables are of unbounded size.

• Example: 𝑛𝑛 = 2
• Suppose 𝑝𝑝1 and 𝑝𝑝2 solve mutual exclusion with progress, using one

read/write shared variable 𝑥𝑥.
• Suppose 𝑝𝑝1 arrives, wants the resource. By the progress requirement,

it must be able to get it.
• Along the way, 𝑝𝑝1 must write to 𝑥𝑥: If not, 𝑝𝑝2 wouldn’t know 𝑝𝑝1 was there,

so it could get the resource too, contradicting mutual exclusion.

𝑝𝑝1 𝑝𝑝2

𝑥𝑥

Contradicts mutual exclusion!

𝑝𝑝1 arrives 𝑝𝑝1 gets the
resource

𝑝𝑝1 writes 𝑥𝑥

𝑝𝑝2 gets the
resource

𝑝𝑝2 writes 𝑥𝑥

𝑝𝑝1 writes 𝑥𝑥,
overwriting 𝑝𝑝2

𝑝𝑝1 gets the
resource

[Burns, Lynch] lower bound, 𝑛𝑛 = 2

With 𝑛𝑛 > 2 processes…
• Mutual exclusion with 𝑛𝑛 processes, using read/write

shared memory, requires n shared variables:

• Argument is more intricate, but uses the same key ideas:
• Writing to a shared variable overwrites previous contents.
• Locality: Process sees only its own state and the values it

reads from shared variables.

𝑝𝑝1 𝑝𝑝2

𝑥𝑥1

𝑝𝑝𝑛𝑛

𝑥𝑥2

Impossibility Results: Consensus

• Fischer, Lynch. A lower bound for the time to assure
interactive consistency. IPL, 1982.

• Chaudhuri, Herlihy, Lynch, Tuttle. Tight bounds for 𝑘𝑘-set
agreement. JACM, 2000.

• Fischer, Lynch, Merritt. Easy impossibility proofs for
distributed consensus problems. Dist. Comp., 1986.

• Fischer, Lynch, Paterson: Impossibility of distributed
consensus with one faulty process. PODS, 1983;
JACM, 1985.

Distributed consensus
• Processes in a distributed network want to agree on a value

in some set 𝑉𝑉.
• Each process starts with an initial value in 𝑉𝑉, and they want

to agree on a value in 𝑉𝑉.
• Some processes might be faulty (stopping, or Byzantine).
• Agreement: All non-faulty processes agree.
• Validity: If all processes have the same initial value 𝑣𝑣, then
𝑣𝑣 is the only allowed decision for a non-faulty process.

2B. Time to Reach Consensus in
Synchronous Systems [Fischer, Lynch 82]
• All known algorithms had used ≥ 𝑓𝑓 + 1 rounds to reach
consensus in the presence of up to 𝑓𝑓 faulty processes.

• This is inherent: 𝑓𝑓 + 1 rounds are needed in the
worst case, even for stopping failures.

• Proof idea: Assume an 𝑓𝑓-round agreement
algorithm tolerating 𝑓𝑓 faults, get a contradiction.

• Assume:
• 𝑛𝑛-node complete graph:
• Binary decisions, 𝑉𝑉 = {0,1}
• Decisions right after round 𝑓𝑓.
• All-to-all communication at every round.

Special case: 𝑓𝑓 = 1
• Theorem 1: There is no 𝑛𝑛-process 1-fault stopping agreement

algorithm in which non-faulty processes always decide at the
end of round 1.

• Proof:
• By contradiction. Suppose there is such an algorithm.
• Construct a chain of executions, each with ≤ 1 failure, where:

• First execution must have (unique) decision value 0.
• Last must have decision value 1.
• Any two consecutive executions are indistinguishable to some

process 𝑖𝑖 that is non-faulty in both. So 𝑖𝑖 must decide the same in
both executions, and the two executions must have the same
decision values.

• So the decision values in the first and last executions must be
the same, contradiction.

Lower bound proof, 𝑓𝑓 = 1
• α0: All inputs 0, no failures.
• …
• α𝑘𝑘: All inputs 1, no failures.
• Start chain from α0.
• Execution α1 removes message 1 → 2.

• α0 and α1 indistinguishable to all except 𝑝𝑝1 and 𝑝𝑝2,
hence to some non-faulty process.

• Execution α2, removes message 1 → 3.
• α1 and α2 indistinguishable to all except 𝑝𝑝1 and 𝑝𝑝3,

hence to some non-faulty process.
• Remove message 1 → 4.

• Indistinguishable to some non-faulty process.
• …

0
0

0
0

0
0

0
0

0
0

0
0

Continuing…
• Having removed all of 𝑝𝑝1’s messages,

change 𝑝𝑝1’s input from 0 to 1.
• Indistinguishable to everyone else.

• We can’t just keep removing messages, since
we are allowed ≤ 1 failure in each execution.

• So, we first replace missing messages (one
at a time), until 𝑝𝑝1 is no longer faulty.

• Repeat with 𝑝𝑝2,𝑝𝑝3, …, eventually reach
execution with all inputs 1, no failures.

• Yields the needed chain.

0
0

0
0

1
0

0
0
1
0

0
0
1
1

1
1

Lower bound proof, 𝑓𝑓 = 2
• Theorem 2: There is no 𝑛𝑛-process 2-fault stopping

agreement algorithm in which non-faulty processes always
decide at the end of round 2.

• Proof: Suppose there is.
• Construct a chain of executions, each with ≤ 2 failures.
• α0: All inputs 0, no failures.
• α𝑘𝑘: All inputs 1, no failures.
• Each consecutive pair indistinguishable

to some non-faulty process.

• E.g., consider how to change 𝑝𝑝1’s initial value from 0 to 1.

0
0

0
0

Lower bound proof, 𝑓𝑓 = 2
• Start with α0, work toward killing 𝑝𝑝1 at the start, to change its

initial value, by removing its messages, one by one.
• Then work toward replacing the messages, one by one.
• Start by removing 𝑝𝑝1’s round 2 messages, one by one.

• Can’t continue by removing 𝑝𝑝1’s round 1 messages, since
then consecutive executions would not look the same to
anyone, e.g., removing 1 → 2 at round 1 allows 𝑝𝑝2 to tell
everyone about the failure, at round 2.

0
0

0
0

• Removing 1 → 2 at round 1 lets 𝑝𝑝2 tell everyone about the failure:

• So, use several steps to remove the round 1 message 1 → 2
• In these steps, both 𝑝𝑝1 and 𝑝𝑝2 are faulty.
• Remove all of 𝑝𝑝2’s round 2 messages, one by one, replace them

one by one.

• Repeat for all of 𝑝𝑝1’s round 1 messages.
• Then change 𝑝𝑝1’s initial value from 0 to 1, as needed.

Lower bound proof, 𝑓𝑓 = 2

0
0

0
0

vs.

0
0

0
0

2C. Consensus in Asynchronous Systems
[Fischer, Lynch, Paterson 83 (FLP)]
• Theorem: In an asynchronous distributed system in which at

most one process may stop without warning, it is impossible
for the non-faulty processes to reach agreement reliably.

• Impossibility holds even for very limited failures:
• At most one process ever fails.
• Failed process simply stops.

• Result may seem counter-intuitive:
• If there are many processes, and at most one can fail, then all

but one should be able to agree, and later tell the remaining
one.

• But this doesn’t work!

• By contradiction: Assume a 1-fault-tolerant asynchronous
algorithm that solves consensus, argue based on just the
problem requirements that this cannot work.

• Assume 𝑉𝑉 = {0,1}.
• Execution: A sequence of steps; in one step, one process

receives one message, updates its state, and sends a
finite number of messages.

• Assume every sent message eventually gets delivered.
• Execution produces a sequence of (global) configurations.
• Notice that:

• In an execution in which all processes start with 0, the only allowed
decision is 0.

• If all processes start with 1, the only allowed decision is 1.
• For “mixed inputs”, either decision is OK.

[FLP] impossibility proof

• Prove that the algorithm must yield a pattern of four
configurations, 𝐶𝐶0,𝐶𝐶1,𝐷𝐷0,𝐷𝐷1, where:
• 𝐷𝐷0 follows from 𝐶𝐶0 in one step, in which a particular process 𝑝𝑝𝑖𝑖

receives a particular message 𝑚𝑚.
• 𝐷𝐷1 follows from 𝐶𝐶1 in one step, in which the same process 𝑝𝑝𝑖𝑖 receives

the same message 𝑚𝑚.
• 𝐶𝐶1 follows from 𝐶𝐶0 in one step, in which a process 𝑝𝑝𝑗𝑗 receives a

message 𝑚𝑚′.
• From 𝐷𝐷0, only decision 0 is possible: 𝐷𝐷0 is 0-valent.
• From 𝐷𝐷1, only decision 1 is possible: 𝐷𝐷1 is 1-valent.

• Thus, we can “localize” a decision to a
particular pattern of configurations.

• For if not, then we could make the algorithm
execute forever, with all processes continuing
to take steps, and no one ever deciding.

• Which contradicts the termination requirement.

0-valent

1-valent

𝐶𝐶0

𝐷𝐷1

𝐷𝐷0𝐶𝐶1

(𝑝𝑝𝑖𝑖 ,𝑚𝑚)

(𝑝𝑝𝑖𝑖 ,𝑚𝑚)

(𝑝𝑝𝑗𝑗 ,𝑚𝑚′)

[FLP] impossibility proof

• Now get a contradiction by considering two cases:
• Case 1: 𝑖𝑖 ≠ 𝑗𝑗

• Then consider delivering (𝑝𝑝𝑗𝑗 ,𝑚𝑚’) after 𝐷𝐷0; still 0-valent.
• So delivering (𝑝𝑝𝑖𝑖 ,𝑚𝑚) then (𝑝𝑝𝑗𝑗 ,𝑚𝑚’) yields 0-valence, but delivering

(𝑝𝑝𝑗𝑗 ,𝑚𝑚’) then (𝑝𝑝𝑖𝑖 ,𝑚𝑚) yields 1-valence.
• But the two steps occur at different processes, so their relative order

can’t matter.
• Contradiction.

[FLP] impossibility proof

• Case 2: 𝑖𝑖 = 𝑗𝑗
• Then consider any deciding execution from 𝐶𝐶0 in

which 𝑝𝑝𝑖𝑖 fails, but everyone else keeps taking steps.
• Applying the same execution from 𝐷𝐷0 must lead to a

decision of 0.
• Applying the same execution from 𝐷𝐷1 must lead to a

decision of 1.
• But the other processes can’t distinguish these cases!
• Contradiction.

0-valent

1-valent

𝐶𝐶0

𝐷𝐷1

𝐷𝐷0𝐶𝐶1

(𝑝𝑝𝑖𝑖 ,𝑚𝑚)

(𝑝𝑝𝑖𝑖 ,𝑚𝑚)

(𝑝𝑝𝑗𝑗 ,𝑚𝑚′)

Significance for distributed systems
• Consensus is an important problem in practice, for example,

for distributed database commit.
• [FLP] result shows limitations on the kind of algorithm one

could hope to find, for agreement problems.
• To get around the impossibility result, one can:

• Use random choices [Ben-Or, 83]
• Rely on timing assumptions [Dolev, Dwork, Stockmeyer, 87]
• Weaken requirements carefully [DLS 88]:

• Agreement, validity always hold.
• Termination required if/when system behavior “stabilizes”: no new

failures, and timing within “normal” bounds.

More Impossibility Results
• Lundelius, Lynch. An upper and lower bound for clock

synchronization. Information and Control, 1984.
• Lynch, Shavit. Timing-based mutual exclusion. RTSS, 1992.
• Attiya, Dwork, Lynch, Stockmeyer. Bounds on the time to reach

agreement in the presence of timing uncertainty. JACM, 1993.
• Attiya, Lynch, Shavit. Are wait-free algorithms fast? JACM, 1994.
• Fan, Lynch. Gradient clock synchronization. PODC, 2004;

Distributed Computing, 2006.
• Lynch. A hundred impossibility proofs for distributed computing.

PODC 1989.
• Ellen, Ruppert. Hundreds of impossibility results for distributed

computing. Distributed Computing 2003.

2D. The CAP Theorem

• Gilbert, Lynch. Brewer's conjecture and the feasibility
of consistent, available, partition-tolerant web
services.
SIGACT NEWS, 2002.

[Gilbert, Lynch]
• Brewer's conjecture and the feasibility of consistent,

available, partition-tolerant web services.
• Inspired by an informal conjecture described by Brewer in a

PODC 2000 keynote.
• Brewer described three desirable properties for Web

services:
• Consistency: Data should appear atomic.
• Availability: Every request to perform an operation should eventually

return some result.
• Partition-tolerance: Tolerates lost messages.

• Brewer’s claim: In general, we can’t achieve all three.
• We formalized the properties; identified several different

versions, some possible, some impossible.

[Gilbert, Lynch]
• Consistency: Atomic Read/Write data objects.
• Availability: Read/Write requests should always return.
• Partition-tolerance: Any set of messages may be lost.
• We considered:

• Asynchronous and partially synchronous models.
• Whether consistency may be violated when messages are lost.

• Asynchronous case: Unbounded message delay.
• Theorem 1: It’s impossible to guarantee availability, atomicity

in all executions, while allowing any set of lost messages.
• Proof idea: Partition the network into two parts,
𝐺𝐺1 and 𝐺𝐺2. Suppose a write occurs in 𝐺𝐺1, then a
read in 𝐺𝐺2. Read can’t know about the write. 𝐺𝐺1 𝐺𝐺2

𝐺𝐺1

𝐺𝐺2

Asynchronous case, cont’d
• Theorem 1: Impossible to guarantee availability, atomicity in

all executions, while allowing any set of lost messages.
• Q: What if we drop the atomicity requirement when

partitions occur?
• Theorem 2: It’s impossible to guarantee availability in all

executions, atomicity in executions in which no messages
are lost, while allowing any set of lost messages in general.

• Proof idea: Processors don’t know whether messages have
really been lost, or may arrive later.

• A violation of atomicity occurs at a finite
point in time; but then we could extend the
execution to deliver all messages.

𝐺𝐺1

𝐺𝐺2

Partially synchronous case
• Local timers; not synchronized, but same rate.
• Can schedule actions to occur at particular local times.
• Messages that aren’t lost are delivered within a known delay.
• Theorem 3: (like Theorem 1) It’s impossible to guarantee

availability and atomicity in all executions, while allowing any
set of lost messages.

• But now:
• Theorem 4: It’s possible to guarantee availability in all

executions, atomicity in executions in which no messages
are lost, while allowing any set of lost
messages in general.

𝐺𝐺1

𝐺𝐺2
• Proof idea: Now we can detect lost

messages.

This talk:

1. Algorithms for Traditional Distributed
Systems

2. Impossibility Results
3. Foundations
4. Algorithms for New Distributed Systems

3. Foundations
• Lynch, Fischer. On describing the behavior and

implementation of distributed systems. Theoretical
Computer Science, 1981.

• Lynch, Tuttle. An introduction to Input/Output Automata.
CWI-Quarterly, 1989.

• Lynch,Tuttle. Hierarchical correctness proofs for
distributed algorithms. PODC, 1987.

• Lynch, Vaandrager. Forward and backward simulations.
Information and Computation 1995.

I/O Automata Consensus

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)1

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑣𝑣)1

𝑝𝑝1
𝑝𝑝2

𝑝𝑝3

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑣𝑣)2

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)2

Timed I/O Automata,
Hybrid I/O Automata

• Lynch, Vaandrager. Forward and backward simulations II:
Timing-based systems. Information and Computation 1996.

• Lynch, Segala, Vaandrager. Hybrid
I/O automata. Information and
Computation, 2003.

• Kaynar, Lynch, Segala, Vaandrager.
The theory of timed I/O automata.
Synthesis Lectures on Distributed
Computing Theory 2006, 2010.

Probabilistic I/O Automata,
Probabilistic Timed I/O Automata
• Lynch, Segala. Probabilistic simulations for probabilistic

processes. CONCUR 1994. CONCUR Test-of-Time award
2020.

• Segala. Modeling and verification of randomized distributed
real-time systems. Ph.D. Thesis, EECS, MIT, 1995.

• Lynch, Segala, Vaandrager. Compositionality for
probabilistic automata. CONCUR, 2003.

• Lynch, Segala, Vaandrager. Observing branching structure
through probabilistic contexts. SIAM J. Computing, 2007.

This talk:

1. Algorithms for Traditional Distributed
Systems

2. Impossibility Results
3. Foundations
4. Algorithms for New Distributed Systems

4. Algorithms for New Distributed Systems
• So far, I have described work on algorithms from traditional

distributed systems.
• For the past decade, we have been working on new types of

distributed systems: those in which noise,
uncertainty, and change predominate:
• Wireless networks
• Biological systems

• Same general kinds of research:
• Abstract models for problems and algorithms.
• New algorithms.
• Proofs of correctness, performance,…
• Impossibility results and lower bounds.
• General foundations.

4A. Wireless Networks
• Ad hoc, no central base station, usually mobile.
• Soldiers, first responders, explorers,…
• Challenge: Find good abstraction layers to make it easier to

develop applications for ad hoc wireless networks.

• Idea 1: Virtual Node layers
• Idea 2: Abstract MAC (Reliable Local

Broadcast) layers

Idea 1: Virtual Node Layers
• Dolev, Gilbert, Lynch, Shvartsman, Welch. GeoQuorums: Implementing

atomic memory in mobile ad hoc networks. DISC 2003.
• Dolev, Gilbert, Lynch, Schiller, Shvartsman, Welch. Virtual Mobile Nodes

for mobile ad hoc networks. DISC, 2004.
• Dolev, Gilbert, Lahiani, Lynch, Nolte. Timed Virtual Stationary Automata

for mobile networks. OPODIS, 2005.
• Dolev, Lahiani, Lynch, Nolte. Self-stabilizing mobile node location

management and message routing. SSS 2005.
• Brown, Gilbert, Lynch, Newport, Nolte, Spindel. The Virtual Node

layer: A programming abstraction for wireless sensor networks.
SIGBED Review, 2007.

• Gilbert, Lynch, Mitra, Nolte. Self-stabilizing robot formations over
unreliable networks. ACM Transactions on Autonomous and Adaptive
Systems, 2009.

Virtual Node Layers
• Simplify programming for an ad hoc mobile network by

adding Virtual Nodes (VNs) at known locations.
• Write algorithms and applications using Virtual Nodes.
• Mobile nodes emulate Virtual Nodes:

• Each VN is emulated by nodes in its vicinity.
• Use a full replication or leader-based strategy.

• Applications:
• Implement atomic memory in a

mobile network
• Geographical message routing
• Regional motion coordination:

robot swarms, Virtual Traffic Lights,
Virtual Air-Traffic Controllers,…

Virtual Traffic Light (VTL)
• For an intersection without a real

traffic light.
• Computers in cars emulate a VN,

which is programmed to act like a
traffic light.

• Any policy desired, e.g., 30 sec in
each direction.

• Cars see red or green, on local
displays.

• VTL dies when no cars are around,
but that’s OK.

Virtual Air-Traffic Controllers
• Aircraft in regions of airspace without

ground-based controllers, for example,
over the ocean.

• To control access to regions, use VATCs,
emulated by computers on the aircraft.

• VATC behaves like a human ATC:
• Keeps track of aircraft in local region.
• Tells neighbor ATCs when to hand off

aircraft.
• Tells aircraft how to move within local

region.

Dealing With Unreliable Communication

• Our Virtual Node work assumed a wireless
communication model based on reliable local
broadcast.

• But real wireless communication is not so
reliable---it’s subject to collisions, with resulting
message losses.

Message Collision Model
• In each round, some nodes transmit, the others
listen.

• Transmitter hears only its own message.
• Listener hears:

• Silence (⊥), if none of its neighbors (in an assumed
communication graph 𝐺𝐺) transmits.

• A message, if exactly one of its neighbors transmits.
• Collision (⊤), if two or more neighbors transmit.

Idea 2: Abstract MAC layers
• Mask collisions within an abstract MAC layer, also
known as a Reliable Local Broadcast (RLB) layer.

• Implement RLB using low-level collision-
management algorithms.

High-level Algorithm

RLB Layer
Implementation

Physical Network

RLB

• Build higher-level
algorithms over RLB.

Abstract MAC layers

• Kuhn, Lynch, Newport. The Abstract MAC layer. DISC,
2009. Dist. Comp. 2011.

• Khabbazian, Kowalski, Kuhn, Lynch. Decomposing
broadcast algorithms using Abstract MAC layers.
Ad Hoc Networks, 2014.

• Halldórsson, Holzer, Lynch. A local broadcast layer for the
SINR network model. PODC 2015.

Remarks

• So, we can mask message collisions inside a
Reliable Local Broadcast layer.

• Use RLB as an abstraction layer for developing
higher-level algorithms.

• But: This work considers message collisions, but
not communication uncertainty, i.e., uncertainty in
where the messages reach.

Communication Uncertainty
• Use two graphs, 𝐺𝐺 and 𝐺𝐺′:

• 𝐺𝐺: Messages must reach.
• 𝐺𝐺′: Messages may reach.

• [Clementi, Monti, Silvestri 04]
• [Kuhn, Lynch, Newport 09]

𝐺𝐺 = (𝑉𝑉,𝐸𝐸) 𝐺𝐺 = (𝑉𝑉,𝐸𝐸,𝐸𝐸′)
𝐸𝐸 ⊆ 𝐸𝐸′

Results for the Dual Graph Model
• Kuhn, Lynch, Newport. Hardness of broadcasting in wireless

networks with unreliable communication. PODC 2009.
• Kuhn, Lynch, Newport, Oshman, Richa. Broadcasting in

unreliable radio networks. PODC 2010
• Ghaffari, Haeupler, Lynch, Newport. Bounds on contention

management in radio networks. DISC 2012
• Ghaffari, Lynch, Newport. The cost of radio network broadcast for

different models of unreliable links. PODC 2013.
• Censor-Hillel, Gilbert, Kuhn, Lynch, Newport. Structuring

unreliable radio networks. DISC 2014.
• Ghaffari, Kantor, Lynch, Newport. Multi-message broadcast with

abstract MAC layers and unreliable links. PODC 2014.
• Lynch, Newport. A (truly) local broadcast layer for unreliable

radio networks. PODC 2015.
• Gilbert, Lynch, Newport, Pajak. On Simple Back-Off in

Unreliable Radio Networks. OPODIS 2018, Best Paper award.

4B. Biological Systems
• Biological distributed algorithms:

• Insect colonies
• Developing organisms
• Brains

• Simple models.
• Simple, flexible, robust, adaptive algorithms.
• Two goals:

• Help to understand biological systems.
• Suggest new ideas

for engineered
algorithms.

Our work: Insect colonies
• Task allocation
• Exploring for food (searching)
• Agreeing on a new nest (consensus)
• Colony density estimation
• Radeva. A Symbiotic Perspective on Distributed Algorithms

and Social Insects. Ph.D Thesis, EECS, MIT, 2017.
• Radeva, Dornhaus, Lynch, Nagpal, Su. Costs of task

allocation with local feedback: effects of colony size and extra
workers in social insects and other multi-agent systems. PLOS
Computational Biology, 2017.

• Musco, Su, Lynch. Ant-Inspired Density Estimation via
Random Walks. arXiv:1603.02981, v2, 2019.

• Zhao, Lynch, Pratt. The Power of Social Information in Ant-
Colony House-Hunting: A Computational Modeling Approach.

https://arxiv.org/pdf/1603.02981.pdf

Our work: Brains
• Stochastic Spiking Neural Network model
• Winner-take-all
• Neural coding, similarity detection
• Learning structured concepts
• Lynch, Musco. A basic compositional
model for Spiking Neural Networks. arXiv:1808.03884, 2018.

• Lynch, Musco, Parter. Winner-Take-All computation in Spiking
Neural Networks. arXiv:1904.12591, 2019.

• Hitron, Lynch, Musco, and Parter. Random sketching,
clustering, and short-term memory in Spiking Neural Networks.
ITCS 2020.

• Lynch, Mallmann-Trenn. Learning hierarchically-structured
concepts. arxiv:1909.04559v4, 2021.

https://arxiv.org/abs/1808.03884
https://arxiv.org/abs/1904.12591
https://arxiv.org/pdf/1909.04559v4.pdf

Conclusions
• We have worked on theory for distributed systems, to help

understand their capabilities and limitations.
• This work has included:

• Abstract models for systems problems and algorithms.
• New algorithms.
• Rigorous proofs of correctness, performance,…, discovery of errors.
• Impossibility results and lower bounds, expressing inherent limitations.
• General foundations for modeling, analyzing distributed systems.

• Many kinds of systems:
• Distributed data-management systems
• Wired, wireless communication systems
• Biological systems: Insect colonies, brains

• But there is still much more to be done!

Thanks to my many, many
collaborators!

Thank you!

Some background

• No family academic background.
• Hunter College High School, math team, enrichment

activities, mentor.
• Computer programming but no computer; foreshadowed a

career in theoretical CS?
• Brooklyn College, encouragement from professors.
• MIT, theory of computation, complexity theory.
• Georgia Tech, switched to distributed computing theory.
• Early papers in the area were not written as math papers; I

realized I could contribute by turning the ideas into math.

	A Theoretical view of�distributed systems�
	Theory for Distributed Systems
	This talk:
	1. Algorithms for Traditional Distributed Systems
	1A. Dwork, Lynch, Stockmeyer [DLS]
	Distributed consensus
	[DLS] contributions
	[DLS] contributions
	[DLS] contributions
	Part 1: Algorithms for Traditional Distributed Systems
	1B. Concurrency Control Algorithms for Nested Transactions
	Concurrency Control Algorithms for Nested Transactions
	1C. Distributed Shared Memory
	[Fekete, Kaashoek, Lynch, 1988]
	[FKL] contributions
	[FKL] contributions
	Summary: System modeling and proofs
	1D. Reconfigurable Atomic Memory
	Goal
	Atomic Memory in Static Networks�[Attiya, Bar-Noy, Dolev 95]
	RAMBO algorithm
	Algorithm structure
	Reads and Writes
	Removing old configurations
	Implementing Recon
	Implementing consensus
	This talk:
	Part 2: Impossibility Results
	Part 2: Impossibility Results
	Impossibility Results for Mutual Exclusion
	2A. Number of Shared Variables for Mutual Exclusion [Burns, Lynch 93]
	[Burns, Lynch] lower bound, 𝑛 = 2
	With 𝑛 > 2 processes…
	Impossibility Results: Consensus
	Distributed consensus
	2B. Time to Reach Consensus in Synchronous Systems [Fischer, Lynch 82]
	Special case: 𝑓 = 1
	Lower bound proof, 𝑓 = 1
	Continuing…
	Lower bound proof, 𝑓 = 2
	Lower bound proof, 𝑓 = 2
	Lower bound proof, 𝑓 = 2
	2C. Consensus in Asynchronous Systems [Fischer, Lynch, Paterson 83 (FLP)]
	[FLP] impossibility proof
	[FLP] impossibility proof
	[FLP] impossibility proof
	Significance for distributed systems
	More Impossibility Results
	2D. The CAP Theorem
	[Gilbert, Lynch]
	[Gilbert, Lynch]
	Asynchronous case, cont’d
	Partially synchronous case
	This talk:
	3. Foundations
	I/O Automata
	Timed I/O Automata, �Hybrid I/O Automata
	Probabilistic I/O Automata, �Probabilistic Timed I/O Automata
	This talk:
	4. Algorithms for New Distributed Systems
	4A. Wireless Networks
	Idea 1: Virtual Node Layers
	Virtual Node Layers
	Virtual Traffic Light (VTL)
	Virtual Air-Traffic Controllers
	Dealing With Unreliable Communication
	Message Collision Model
	Idea 2: Abstract MAC layers
	Abstract MAC layers
	Remarks
	Communication Uncertainty
	Results for the Dual Graph Model
	4B. Biological Systems
	Our work: Insect colonies
	Our work: Brains
	Conclusions
	Thanks to my many, many collaborators!��Thank you!
	Some background

