
Reflections on Programming
Methodology

Barbara Liskov
MIT CSAIL

December 2020

My Background
 UC Berkeley Math 1961
 Mitre
 Harvard
 Stanford PhD (1963-1968)
 Mitre

The Situation in 1970
 The software crisis!

The Situation in 1970
 The software crisis!

 We did not understand how to build
programs that worked

 Software development efforts failed

Programming Methodology
 How should programs be designed?
 How should programs be structured?

The Landscape
 E. W. Dijkstra. Go To Statement

Considered Harmful. Cacm, Mar. 1968

The Landscape
 N. Wirth. Program Development by

Stepwise Refinement. Cacm, April 1971

The Landscape
 D. L. Parnas. Information Distribution

Aspects of Design Methodology. IFIP
Congress, 1971

 “The connections between modules are
the assumptions which the modules
make about each other.”

Modularity Today
 A program is a collection of modules

 Each module has an interface, described
by a specification

 E.g., a sort routine

Modularity Today
 A program is a collection of modules

 Each has an interface described by a
specification

 A module’s implementation is correct if it
meets the specification

Modularity Today
 A program is a collection of modules

 Each has an interface described by a
specification

 A module’s implementation is correct if it
meets the specification

 Local reasoning provided using modules
depend only on the specification

Modularity in 1970
 We knew we wanted it
 We understood its benefits

 Local reasoning
 Independent development
 Modifiability

Modularity in 1970
 Procedures were the only type of

module
 e.g. a sort routine

 Not powerful enough
 e.g., a file system

 Complicated connections

Partitions
 B. Liskov. A Design Methodology for

Reliable Software Systems. FJCC, Dec.
1972

Partitions

Partition state

op1 op2 op3

Move to MIT 1972

From Partitions to ADTs
 How can these ideas be applied to

building programs?

Idea
 Connect partitions to data types

Partitions as Data Types

Partition state

op1 op2 op3

Why This Idea Mattered
 Links modularity to design

 Design by inventing abstractions
 Programmers understood data types
 They would be able to invent new ones

 But requires programming language
support!

Exploring Abstract Data Types
 Joint work with Steve Zilles

The Landscape
 O-J. Dahl and C.A.R. Hoare. Hierarchical

Program Structures. Structured
Programming, Academic Press, 1972

The Landscape
 J. H. Morris. Protection in Programming

Languages. Cacm. Jan. 1973

The Landscape
 J. H. Morris. Protection in Programming

Languages. Cacm. Jan. 1973
 Code outside the module must not modify

the data managed by the module
 Nor even observe it

Abstract Data Types
 B. Liskov and S. Zilles. Programming

with Abstract Data Types. ACM Sigplan
Conference on Very High Level
Languages. April 1974

What That Paper Proposed
 Abstract data types

 A set of objects
 A set of operations
 The operations provide the only way to

create and use the objects
 A sketch of a programming language

From ADTs to CLU
 Participants

 Russ Atkinson
 Craig Schaffert
 Alan Snyder

 Abstraction Mechanisms in CLU, B. Liskov
et al, CACM August 1977

Rationale
 Precise rules
 A programming language is a tool

 Convenience
 Expressive power
 Performance

Some Facts about CLU
 Static type checking
 Heap-based
 Separate compilation
 No concurrency, no gotos, no

inheritance

CLU Mechanisms
 Clusters
 Polymorphism (generics)
 Iterators
 Exception handling

After CLU
 Distributed computing

 Viewstamped replication
 Practical BFT (Byzantine fault tolerance)
 DIFC (Decentralized information flow

control)

After CLU
 Programming methodology

 Modular program design
 Reasoning about correctness
 6.170

 With John Guttag

After CLU
 Programming methodology

 Modular program design
 Reasoning about correctness
 6.170
 Type hierarchy

From CLU to Object-Oriented
Programming
 SmallTalk provided inheritance

From CLU to Object-Oriented
Programming
 SmallTalk provided inheritance

 Inheritance was used for
 Implementation
 Type hierarchy

Type Hierarchy
 Wasn’t well understood

 E.g., stacks vs. queues

Behavioral Subtyping
 Objects of subtypes should behave like

those of supertypes if used via
supertype methods

Behavioral Subtyping
 Objects of subtypes should behave like

those of supertypes if used via
supertype methods

 The “Liskov Substitution Principle”

Behavioral Subtyping
 Objects of subtypes should behave like

those of supertypes if used via
supertype methods
 B. Liskov. Data abstraction and Hierarchy.

Sigplan Notices, May 1988
 B. Liskov and J. Wing. A Behavioral Notion

of Subtyping. ACM Toplas, Nov. 1994

Programming Today
 Modularity based on abstraction is the

way things are done

Reflections on Programming
Methodology

Barbara Liskov
MIT CSAIL

December 2020

	Reflections on Programming Methodology
	My Background
	The Situation in 1970
	The Situation in 1970
	Programming Methodology
	The Landscape
	The Landscape
	The Landscape
	Modularity Today
	Modularity Today
	Modularity Today
	Modularity in 1970
	Modularity in 1970
	Partitions
	Partitions
	Move to MIT 1972
	From Partitions to ADTs
	Idea
	Partitions as Data Types
	Why This Idea Mattered
	Exploring Abstract Data Types
	The Landscape
	The Landscape
	The Landscape
	Abstract Data Types
	What That Paper Proposed
	From ADTs to CLU
	Image page
	Rationale
	Some Facts about CLU
	CLU Mechanisms
	After CLU
	After CLU
	After CLU
	From CLU to Object-Oriented Programming
	From CLU to Object-Oriented Programming
	Type Hierarchy
	Behavioral Subtyping
	Behavioral Subtyping
	Behavioral Subtyping
	Programming Today
	Reflections on Programming Methodology

