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My Background
 UC Berkeley Math 1961
 Mitre
 Harvard
 Stanford PhD  (1963-1968)
 Mitre
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The Situation in 1970
 The software crisis!

 We did not understand how to build 
programs that worked

 Software development efforts failed



Programming Methodology
 How should programs be designed?
 How should programs be structured?



The Landscape
 E. W. Dijkstra. Go To Statement 

Considered Harmful. Cacm, Mar. 1968



The Landscape
 N. Wirth. Program Development by 

Stepwise Refinement. Cacm, April 1971



The Landscape
 D. L. Parnas. Information Distribution 

Aspects of Design Methodology. IFIP 
Congress, 1971

 “The connections between modules are 
the assumptions which the modules 
make about each other.”
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Modularity Today
 A program is a collection of modules

 Each has an interface described by a 
specification

 A module’s implementation is correct if it 
meets the specification

 Local reasoning provided using modules 
depend only on the specification



Modularity in 1970
 We knew we wanted it
 We understood its benefits

 Local reasoning
 Independent development
 Modifiability



Modularity in 1970
 Procedures were the only type of 

module 
 e.g. a sort routine

 Not powerful enough
 e.g., a file system

 Complicated connections



Partitions
 B. Liskov. A Design Methodology for 

Reliable Software Systems. FJCC, Dec. 
1972



Partitions 

Partition state

op1  op2  op3



Move to MIT 1972



From Partitions to ADTs
 How can these ideas be applied to 

building programs?



Idea
 Connect partitions to data types



Partitions as Data Types 

Partition state

op1  op2  op3



Why This Idea Mattered
 Links modularity to design

 Design by inventing abstractions
 Programmers understood data types
 They would be able to invent new ones

 But requires programming language 
support!



Exploring Abstract Data Types
 Joint work with Steve Zilles



The Landscape
 O-J. Dahl and C.A.R. Hoare. Hierarchical 

Program Structures. Structured 
Programming, Academic Press, 1972
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The Landscape
 J. H. Morris. Protection in Programming 

Languages. Cacm. Jan. 1973
 Code outside the module must not modify 

the data managed by the module
 Nor even observe it



Abstract Data Types
 B. Liskov and S. Zilles. Programming 

with Abstract Data Types. ACM Sigplan 
Conference on Very High Level 
Languages.  April 1974



What That Paper Proposed
 Abstract data types

 A set of objects
 A set of operations
 The operations provide the only way to 

create and use the objects
 A sketch of a programming language



From ADTs to CLU
 Participants

 Russ Atkinson
 Craig Schaffert
 Alan Snyder

 Abstraction Mechanisms in CLU, B. Liskov 
et al, CACM August 1977



 



Rationale
 Precise rules
 A programming language is a tool

 Convenience
 Expressive power
 Performance 



Some Facts about CLU
 Static type checking
 Heap-based
 Separate compilation
 No concurrency, no gotos, no 

inheritance



CLU Mechanisms
 Clusters
 Polymorphism (generics)
 Iterators 
 Exception handling



After CLU
 Distributed computing

 Viewstamped replication
 Practical BFT (Byzantine fault tolerance)
 DIFC (Decentralized information flow 

control)



After CLU
 Programming methodology

 Modular program design
 Reasoning about correctness
 6.170

 With John Guttag



After CLU
 Programming methodology

 Modular program design
 Reasoning about correctness
 6.170
 Type hierarchy
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From CLU to Object-Oriented 
Programming
 SmallTalk provided inheritance

 Inheritance was used for
 Implementation
 Type hierarchy



Type Hierarchy
 Wasn’t well understood

 E.g., stacks vs. queues



Behavioral Subtyping
 Objects of subtypes should behave like 

those of supertypes if used via 
supertype methods



Behavioral Subtyping
 Objects of subtypes should behave like 

those of supertypes if used via 
supertype methods

 The “Liskov Substitution Principle” 



Behavioral Subtyping
 Objects of subtypes should behave like 

those of supertypes if used via 
supertype methods
 B. Liskov. Data abstraction and Hierarchy. 

Sigplan Notices, May 1988
 B. Liskov and J. Wing. A Behavioral Notion 

of Subtyping. ACM Toplas, Nov. 1994



Programming Today
 Modularity based on abstraction is the 

way things are done
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