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Yann LeCun

Challenges for Machine Learning, Vision, Signal Processing, AI, NeuroscienceChallenges for Machine Learning, Vision, Signal Processing, AI, Neuroscience

How can learning build a perceptual system?

How do we learn representations of the perceptual world?

In ML/CV/ASR/MIR: How do we learn features (not just classifiers)?

With good representations, we can learn categories from just a few 
examples.

ML has neglected the question of learning representations, relying 
instead on domain expertise to engineer features and kernels.

Deep Learning addresses the problem of learning representations

Goal 1: biologically-plausible methods for deep learning

Goal 2: representation learning for computer perception
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Architecture of “Mainstream” SystemsArchitecture of “Mainstream” Systems

Traditional way: handcrafted features + classifier

“Simple” Trainable 
Classifier

(hand­crafted)
Feature Extraction

Mainstream Approaches to Image and Speech Recognition

Classifier
(Supervised)

Low­Level
Features
(fixed)
MFCC
SIFT
HoG

Mid­Level
Features

(unsupervised)
Mix of Gaussians

K­means
Sparse Coding
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Trainable Feature HierarchiesTrainable Feature Hierarchies

Why can't we make all the modules trainable?

Proposed way: hierarchy of trained features

Trainable
Feature

Transform

Trainable
Feature

Transform

Trainable
Classifier/
Predictor

Learned Internal Representation
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The Mammalian Visual Cortex is HierarchicalThe Mammalian Visual Cortex is Hierarchical

The ventral (recognition) pathway in the visual cortex has multiple stages

Retina - LGN - V1 - V2 - V4 - PIT - AIT ....

[picture from Simon Thorpe]

[Gallant & Van Essen] 



Yann LeCun

Classifier
feature

Pooling 

Non­

Linear

Filter

Bank 
Norm

Feature Transform = 
Normalization → Filter Bank → Non-Linearity → Pooling

Feature Transform = 
Normalization → Filter Bank → Non-Linearity → Pooling

Stacking multiple stages of  
[Normalization  Filter Bank  Non-Linearity  Pooling].→ → →

Normalization: variations on whitening
Subtractive: average removal, high pass filtering
Divisive: local contrast normalization, variance normalization

Filter Bank: dimension expansion, projection on overcomplete basis

Non-Linearity: sparsification, saturation, lateral inhibition....
Component-wise shrinkage or tanh, winner-takes-all

Pooling: aggregation over space or feature type, subsampling
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Classifier
feature

Pooling 

Non­

Linear

Filter

Bank 
Norm

Feature Transform = 
Normalization → Filter Bank → Non-Linearity → Pooling

Feature Transform = 
Normalization → Filter Bank → Non-Linearity → Pooling

Filter Bank → Non-Linearity = Non-linear embedding in high dimension

Feature Pooling = contraction, dimensionality reduction, smoothing

Learning the filter banks at every stage

Creating a hierarchy of features

Basic elements are inspired by models of the visual (and auditory) cortex
Simple Cell + Complex Cell model of [Hubel and Wiesel 1962]
Many “traditional” feature extraction methods are based on this
SIFT, GIST, HoG, Convolutional networks.....

 [Fukushima 1974-1982], [LeCun 1988-now],  [Poggio 2005-now], [Ng 
2006-now], many others....
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Basic Convolutional Network ArchitectureBasic Convolutional Network Architecture

pooling 
subsampling

“Simple cells”
“Complex cells”

Multiple 
convolutions

Retinotopic Feature Maps

[LeCun et al. 89]
[LeCun et al. 98]
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Convolutional Network (ConvNet)Convolutional Network (ConvNet)

input

83x83

Layer 1

64x75x75 Layer 2

64@14x14

Layer 3

256@6x6 Layer 4

256@1x1 Output

101

9x9

convolution

(64 kernels)

9x9

convolution

(4096 kernels)

10x10 pooling,

5x5 subsampling
6x6 pooling

4x4 subsamp

 
Non-Linearity: shrinkage function, tanh

Pooling: L2, average, max, average→tanh  

Training: Supervised (1988-2006), Unsupervised+Supervised (2006-now)
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Convolutional Network (vintage 1990) Convolutional Network (vintage 1990) 

filters → tanh → average-tanh → filters → tanh → average-tanh → filters → tanh
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“Mainstream” object recognition pipeline 2006-2010: similar to ConvNets“Mainstream” object recognition pipeline 2006-2010: similar to ConvNets

Fixed low-level Features + unsupervised mid-level features + simple classifier

Example (on Caltech 101 dataset): 
SIFT + Vector Quantization + Pyramid pooling + SVM: >65% 

[Lazebnik et al. CVPR 2006]

SIFT + Local Sparse Coding Macrofeat. + Pyr/ pooling + SVM: >77%
[Boureau et al. ICCV 2011]
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Other Applications with State-of-the-Art PerformanceOther Applications with State-of-the-Art Performance

Traffic Sign Recognition (GTSRB)
German Traffic Sign Reco Bench 
97.2% accuracy

House Number Recognition (Google) 
Street View House Numbers
94.8% accuracy
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ConvNet Architecture with Multi-Stage FeaturesConvNet Architecture with Multi-Stage Features

Feature maps from all stages are pooled/subsampled and sent to the 
final classification layers

Pooled low-level features: good for textures and local motifs
High-level features: good for “gestalt” and global shape

[Sermanet, Chintala, LeCun ArXiv:1204.3968, 2012]
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Industrial Applications of ConvNetsIndustrial Applications of ConvNets

AT&T/Lucent/NCR
Check reading, OCR, handwriting recognition (deployed 1996)

NEC
Intelligent vending machines and advertizing posters, cancer 
cell detection, automotive applications

Google
Face and license plate removal from StreetView images

Microsoft
Handwriting recognition, speech detection

Orange
Face detection, HCI, cell phone-based applications

Startups, other companies...
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Deep Learning and Feature Learning TodayDeep Learning and Feature Learning Today

Deep Learning is the hottest topic in speech recognition today
A few long-standing performance records were broken with deep learning 
methods
Microsoft and Google have both deployed DL-based speech recognition 
system in their products
Microsoft, Google, IBM, AT&T, and all the major players in speech 
recognition have projects on deep learning

Deep Learning is about to become the hottest topic in Computer Vision
Feature engineering is the bread-and-butter of a large portion of the CV 
community, which creates some resistance to feature learning
The record holder on the ImageNet dataset is a convolutional net
The record holder on semantic segmentation is a convolutional net

Deep Learning is becoming hot in Natural Language Processing
The DL tutorial at ACL 2012 was the most popular of all tutorials

Deep Learning/Feature Learning in Applied Mathematics
IPAM Graduate summer school on DL/FL attracted 160 people
The connection with Applied Math is through sparse coding, non-convex 
optimization, stochastic gradient algorithms, etc... 
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Deep Learning: A Theoretician's Paradise? Deep Learning: A Theoretician's Paradise? 

Deep Learning is about representing high-dimensional data
There has to be interesting theoretical questions there
What is the geometry of natural signals?
Is there an equivalent of statistical learning theory for 
unsupervised learning?
What are good criteria on which to base unsupervised learning?

Deep Learning is a form of latent variable factor graphs
Internal representations can be viewed as latent variables to be 
inferred, and deep belief networks are a particular type of latent 
variable models.
The most interesting deep belief nets have intractable loss 
functions: how do we get around that problem?

Theory from harmonic analysis and sparse coding
Mallat's “scattering transform”, Osher's “split Bregman” methods 
for sparse modeling, Morton's “algebraic geometry of DBN”,
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       Fast Scene Parsing
with

     Multiscale ConvNet

       Fast Scene Parsing
with

     Multiscale ConvNet

[Farabet, Couprie, Najman, LeCun,  ICML 2012]
[Farabet, Couprie, Najman, LeCun, IEEE T.PAMI 2013]
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Labeling every pixel with the object it belongs toLabeling every pixel with the object it belongs to

[Farabet et al. ICML 2012]

Would help identify obstacles, targets, landing sites, dangerous areas

Would help line up depth map with edge maps
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Scene Parsing/Labeling: ConvNet ArchitectureScene Parsing/Labeling: ConvNet Architecture

Each output sees a large input context:
46x46 window at full rez; 92x92 at ½ rez; 184x184 at ¼ rez
[7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->
Trained supervised on fully-labeled images

Laplacian
Pyramid

Level 1 
Features

Level 2
Features

Upsampled
Level 2 Features

Categories
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Scene Parsing/Labeling: System ArchitectureScene Parsing/Labeling: System Architecture

Original Image

Multi-Scale
Pyramid
(Band-pass Filtered)

ConvNet

Dense
Feature Maps
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Method 1: majority over super-pixel regionsMethod 1: majority over super-pixel regions

[Farabet et al. IEEE T. PAMI 2012]
M
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C
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Method 2: optimal cover of purity treeMethod 2: optimal cover of purity tree

Spanning Tree
From pixel 
Similarity graph

Distribution of
Categories within
Each Segment

2-layer
Neural
net

[Farabet et al. ICML 2012]
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Scene Parsing/Labeling: PerformanceScene Parsing/Labeling: Performance

[Farabet et al. IEEE T. PAMI 2012]

Stanford Background Dataset [Gould 1009]: 8 categories
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Scene Parsing/Labeling: PerformanceScene Parsing/Labeling: Performance

[Farabet et al. IEEE T. PAMI 2012]

SIFT Flow Dataset

[Liu 2009]: 

33 categories

Barcelona dataset

[Tighe 2010]: 

170 categories.
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Scene Parsing/Labeling: ResultsScene Parsing/Labeling: Results

[Farabet et al. 2012]

Samples from the SIFT-Flow dataset (Liu)
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Scene Parsing/Labeling: SIFT Flow dataset (33 categories)Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

[Farabet et al. ICML 2012]

Samples from the SIFT-Flow dataset (Liu)
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Scene Parsing/Labeling: SIFT Flow dataset (33 categories)Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

[Farabet et al. ICML 2012]
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Scene Parsing/LabelingScene Parsing/Labeling

[Farabet et al. ICML 2012]
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Scene Parsing/LabelingScene Parsing/Labeling

[Farabet et al. ICML 2012]
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Scene Parsing/LabelingScene Parsing/Labeling

[Farabet et al. 2012]
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Scene Parsing/LabelingScene Parsing/Labeling

[Farabet et al. 2012]
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Scene Parsing/LabelingScene Parsing/Labeling

No post-processing

Frame-by-frame

ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware
But communicating the features over ethernet limits system perf.
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Scene Parsing/Labeling: Temporal ConsistencyScene Parsing/Labeling: Temporal Consistency

Majority Vote on Spatio-Temporal Super-Pixels

Reset every second
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Scene Parsing/Labeling: Temporal ConsistencyScene Parsing/Labeling: Temporal Consistency

Majority Vote on Spatio-Temporal Super-Pixels

Reset every second
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      Unsupervised 
     Feature Learning

      variations on the 
       sparse auto-encoder theme

      Unsupervised 
     Feature Learning

      variations on the 
       sparse auto-encoder theme
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Learning Features with Unsupervised Pre-TrainingLearning Features with Unsupervised Pre-Training

Supervised learning requires lots of labeled samples

Most available data is unlabeled

Models need to be large to “understand” the task

But large models have many parameters and require many labeled samples

Unsupervised learning can be used to pre-train the system before 
supervised refinement

Unsupervised pre-training “consumes” degrees of freedom while placing 
the system in a favorable region of parameter space.

Supervised refinement merely find the closest local minimum within the 
attractor found by unsupervised pre-training.

Unsupervised feature learning through sparse/overcomplete auto-encoders

With high-dimensional and sparse representations, the data manifold is 
“flattened” (any collection of points is flatter in higher dimension)
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Sparse Coding & Sparse ModelingSparse Coding & Sparse Modeling

Sparse linear reconstruction

Energy  = reconstruction_error + code_prediction_error + code_sparsity

E (Y i , Z )=∥Y i
−W d Z∥

2
+ λ∑ j

∣z j∣

[Olshausen & Field 1997]

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES 

∑ j
.

Y → Ẑ=argmin Z E (Y , Z )Inference is slow

DETERMINISTIC

FUNCTION
FACTOR

VARIABLE
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How to Speed Up Inference in a Generative Model?How to Speed Up Inference in a Generative Model?

Factor Graph with an asymmetric factor

Inference Z → Y is easy
Run Z through deterministic decoder, and sample Y

Inference Y → Z is hard, particularly if Decoder function is many-to-one
MAP: minimize sum of two factors with respect to Z
Z* =  argmin_z  Distance[Decoder(Z), Y] + FactorB(Z)

INPUT

Decoder

Y

Distance

Z LATENT

VARIABLE

Factor B

Generative Model

Factor A
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Idea: Train a “simple” function to approximate the solutionIdea: Train a “simple” function to approximate the solution

Train a “simple” feed-forward function to predict the result of a complex 
optimization on the data points of interest

INPUT

Decoder

Y

Distance

Z LATENT

VARIABLE

Factor B

[Kavukcuoglu, Ranzato, LeCun, rejected by every conference, 2008­2009]

Generative Model

Factor A

Encoder Distance

Fast Feed­Forward Model

Factor A'

1. Find optimal Zi for all Yi; 2. Train Encoder to predict Zi from Yi
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Predictive Sparse Decomposition (PSD): sparse auto-encoderPredictive Sparse Decomposition (PSD): sparse auto-encoder

Prediction the optimal code with a trained encoder

Energy  = reconstruction_error + code_prediction_error + code_sparsity

E Y i , Z =∥Y i
−W d Z∥

2
∥Z−ge W e ,Y i

∥
2
∑ j

∣z j∣

ge (W e , Y i
)=shrinkage(W e Y i

)

[Kavukcuoglu, Ranzato, LeCun, 2008   arXiv:1010.3467],→

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES 

∑ j
.

∥Z− Z∥
2ge W e ,Y i


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Soft Shrinkage Non-LinearitySoft Shrinkage Non-Linearity
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PSD: Basis Functions on MNISTPSD: Basis Functions on MNIST

Basis functions (and encoder matrix) are digit parts
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Predictive Sparse Decomposition (PSD): TrainingPredictive Sparse Decomposition (PSD): Training

Training on 
natural images 
patches. 

12X12
256 basis 
functions
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Learned Features on natural patches: V1-like receptive fieldsLearned Features on natural patches: V1-like receptive fields
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Better Idea: Give the “right” structure to the encoderBetter Idea: Give the “right” structure to the encoder

ISTA/FISTA: iterative algorithm that converges to optimal sparse code

INPUT Y ZW e sh ()

S

+

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012]
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LISTA: Train We and S matrices to give a good approximation quicklyLISTA: Train We and S matrices to give a good approximation quickly

Think of the FISTA flow graph as a recurrent neural net where We and S are 
trainable parameters

INPUT Y ZW e sh ()

S

+

Time-Unfold the flow graph for K iterations

Learn the We and S matrices with “backprop-through-time”

Get the best approximate solution within K iterations

Y

Z

W e

sh  + S sh  + S
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Learning ISTA (LISTA) vs ISTA/FISTALearning ISTA (LISTA) vs ISTA/FISTA
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THIS IS ONE STAGE OF THE CONVNET

One Stage: filter → Shrinkage → L2 Pooling → Contrast NormOne Stage: filter → Shrinkage → L2 Pooling → Contrast Norm

subtr activ e+di visive  
contr ast n orm

a lizat ion

C
on vol utio ns

 Shri nka ge

L
2 Po olin g &

 s ub­s am
pl ing
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Local Contrast NormalizationLocal Contrast Normalization

Performed on the state of every layer, including 
the input

Subtractive Local Contrast Normalization
Subtracts from every value in a feature a 
Gaussian-weighted average of its 
neighbors (high-pass filter)

Divisive Local Contrast Normalization
Divides every value in a layer by the 
standard deviation of its neighbors over 
space and over all feature maps

Subtractive + Divisive LCN performs a kind of 
approximate whitening.
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Using PSD to Train a Hierarchy of FeaturesUsing PSD to Train a Hierarchy of Features

Phase 1: train first layer using PSD

FEATURES 

Y Z

∥Y i− Y∥2

∣z j∣

W d Z ∑ j
.

∥Z− Z∥
2ge W e ,Y i


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Using PSD to Train a Hierarchy of FeaturesUsing PSD to Train a Hierarchy of Features

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

FEATURES 

Y ∣z j∣

ge W e ,Y i

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Using PSD to Train a Hierarchy of FeaturesUsing PSD to Train a Hierarchy of Features

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

FEATURES 

Y ∣z j∣

ge W e ,Y i


Y Z

∥Y i− Y∥2

∣z j∣

W d Z ∑ j
.

∥Z− Z∥
2ge W e ,Y i


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Using PSD to Train a Hierarchy of FeaturesUsing PSD to Train a Hierarchy of Features

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

FEATURES 

Y ∣z j∣

ge W e ,Y i


∣z j∣

ge W e ,Y i




Yann LeCun

Using PSD to Train a Hierarchy of FeaturesUsing PSD to Train a Hierarchy of Features

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

Phase 5: train a supervised classifier on top

Phase 6 (optional): train the entire system with supervised back-propagation

FEATURES 

Y ∣z j∣

ge W e ,Y i


∣z j∣

ge W e ,Y i


classifier
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Using PSD Features for Object RecognitionUsing PSD Features for Object Recognition

64 filters on 9x9 patches trained with PSD 
with Linear-Sigmoid-Diagonal Encoder
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Multistage Hubel-Wiesel Architecture: FiltersMultistage Hubel-Wiesel Architecture: Filters

Stage 1

Stage2

After PSD After supervised refinement
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Results on Caltech101 with sigmoid non-linearityResults on Caltech101 with sigmoid non-linearity

 ← like HMAX model
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Results on Caltech101: purely supervised 
with soft-shrink, L2 pooling, contrast normalization

Results on Caltech101: purely supervised 
with soft-shrink, L2 pooling, contrast normalization

Supervised learning with soft-shrinkage non-linearity, L2 complex cells, and 
sparsity penalty on the complex cell outputs: 71%
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Optimal
Stimuli
for each
Complex 
Cell

Why Do Random Filters Work?Why Do Random Filters Work?

Random
Filters
For
Simple
Cells

Trained
Filters
For
Simple
Cells
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Small NORB datasetSmall NORB dataset

Two-stage system: error rate versus number of labeled training samples 

No normalization

Random filters

No normalization

Unsup filters

Unsup+Sup filters
Sup filters
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 Convolutional Sparse Coding
Convolutional PSD

 Convolutional Sparse Coding
Convolutional PSD

[Kavukcuoglu, Sermanet, Boureau, Mathieu, LeCun. NIPS 2010]: convolutional PSD

[Zeiler, Krishnan, Taylor, Fergus, CVPR 2010]: Deconvolutional Network
[Lee, Gross, Ranganath, Ng,  ICML 2009]: Convolutional Boltzmann Machine
[Norouzi, Ranjbar, Mori, CVPR 2009]:  Convolutional Boltzmann Machine
[Chen, Sapiro, Dunson, Carin, Preprint 2010]: Deconvolutional Network with 
automatic adjustment of code dimension.
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Convolutional TrainingConvolutional Training

Problem: 
With patch-level training, the learning algorithm must reconstruct 
the entire patch with a single feature vector
But when the filters are used convolutionally, neighboring feature 
vectors will be highly redundant

Patch­level training produces
lots of filters that are shifted
versions of each other.
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Convolutional Sparse CodingConvolutional Sparse Coding

Replace the dot products with dictionary element by convolutions.
Input Y is a full image
Each code component Zk is a feature map (an image)
Each dictionary element is a convolution kernel

Regular sparse coding

Convolutional S.C.

∑
k

. * Zk

Wk

Y =

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]
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Convolutional PSD: Encoder with a soft sh() Function Convolutional PSD: Encoder with a soft sh() Function 

Convolutional Formulation
Extend sparse coding from PATCH to IMAGE

PATCH based learning CONVOLUTIONAL learning
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Pedestrian Detection, Face DetectionPedestrian Detection, Face Detection

[Osadchy,Miller LeCun JMLR 2007],[Kavukcuoglu et al. NIPS 2010]
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ConvNet Architecture with Multi-Stage FeaturesConvNet Architecture with Multi-Stage Features

Feature maps from all stages are pooled/subsampled and sent to the 
final classification layers

Pooled low-level features: good for textures and local motifs
High-level features: good for “gestalt” and global shape

[Sermanet, Chintala, LeCun ArXiv:1204.3968, 2012]

filter+tanh

22 feat maps

Input

78x126xRGB

L2 Pooling

3x3

filter+tanh

64 feat maps

Av Pooling

2x2 filter+tanh
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Pedestrian Detection (INRIA Dataset)Pedestrian Detection (INRIA Dataset)

[Kavukcuoglu et al. NIPS 2010]
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Convolutional PSD pre-training for pedestrian detection Convolutional PSD pre-training for pedestrian detection 

ConvPSD pre-training improves the accuracy of pedestrian detection over 
purely supervised training from random initial conditions.
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Results on “Near Scale” Images (>80 pixels tall, no occlusions)Results on “Near Scale” Images (>80 pixels tall, no occlusions)

Daimler
p=21790

ETH
p=804

TudBrussels
p=508

INRIA
p=288
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Results on “Reasonable” Images (>50 pixels tall, few occlusions)Results on “Reasonable” Images (>50 pixels tall, few occlusions)

Daimler
p=21790

ETH
p=804

TudBrussels
p=508

INRIA
p=288
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        Musical Genre 
       Recognition

       Same Architecture, Different Data

        Musical Genre 
       Recognition

       Same Architecture, Different Data

[Henaff et al. ISMIR 2011]
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Convolutional PSD Features on Time-Frequency SignalsConvolutional PSD Features on Time-Frequency Signals

Input: “Constant Q Transform” over 46.4ms windows (1024 samples)
96 filters, with frequencies spaced every quarter tone (4 octaves)

Architecture:
Input: sequence of contrast-normalized CQT vectors
1: PSD features, 512 trained filters
2: shrinkage function  rectification→
3: pooling over 5 seconds
4: linear SVM classifier
5: pooling of SVM categories over 30 seconds

GTZAN Dataset
1000 clips, 30 second each
10 genres: blues, classical, country, disco, hiphop, jazz, metal, pop, 
reggae and rock. 

Results
84% correct classification
(state of the art is at 92% with many features)
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Single­Stage Convolutional Network
Training of filters: PSD (unsupervised)

Architecture: contrast norm → filters → shrink → max poolingArchitecture: contrast norm → filters → shrink → max pooling

subtr activ e+di visive  
contr ast n orm

a lizat ion

Filt ers

 Shri nka ge

M
ax  Pooli ng (5 s)

L
inea r C
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Constant Q Transform over 46.4 ms → Contrast NormalizationConstant Q Transform over 46.4 ms → Contrast Normalization

subtractive+divisive contrast normalization



Yann LeCun

Convolutional PSD Features on Time-Frequency SignalsConvolutional PSD Features on Time-Frequency Signals

Octave-wide features                                     full 4-octave features

Minor 3rd

Perfect 4th

Perfect 5th

Quartal chord

Major triad

transient
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PSD Features on 
Constant-Q Transform

PSD Features on 
Constant-Q Transform

Octave-wide features 

Encoder basis functions 

Decoder basis functions
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Time-Frequency
Features

Time-Frequency
Features

Octave-wide features on 
8 successive acoustic 
vectors 

Almost no temporal 
structure in the 
filters!
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Accuracy on GTZAN dataset (small, old, etc...)Accuracy on GTZAN dataset (small, old, etc...)

Accuracy: 83.4%. State of the Art: 84.3%

Very fast
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   Learning 
   Invariant Features

   (learning complex cells)

   Learning 
   Invariant Features

   (learning complex cells)

[Kavukcuoglu, Ranzato, Fergus, LeCun, CVPR 2009]
[Gregor & LeCun 2010]
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Learning Invariant Features with L2 Group SparsityLearning Invariant Features with L2 Group Sparsity

Unsupervised PSD ignores the spatial pooling step.

Could we devise a similar method that learns the pooling layer as well?

Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features
Minimum number of pools must be non-zero
Number of features that are on within a pool doesn't matter
Pools tend to regroup similar features

INPUT Y Z

∥Y i
− Y∥

2 W d Z

FEATURES 

∑ j
.

∥Z− Z∥
2ge W e ,Y i



∑k ∈P j
Zk

2


L2 norm within 
each pool

E (Y ,Z )=∥Y−W d Z∥
2
+∥Z−ge (W e ,Y )∥

2
+ ∑

j √∑k∈P j

Z k
2
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Learning Invariant Features with L2 Group SparsityLearning Invariant Features with L2 Group Sparsity

Idea: features are pooled in group. 
Sparsity: sum over groups of L2 norm of activity in group.

[Hyvärinen Hoyer 2001]: “subspace ICA” 
decoder only, square

[Welling, Hinton, Osindero NIPS 2002]: pooled product of experts 
encoder only, overcomplete, log student-T penalty on L2 pooling

[Kavukcuoglu, Ranzato, Fergus LeCun, CVPR 2010]: Invariant PSD
encoder-decoder (like PSD), overcomplete, L2 pooling

[Le et al. NIPS 2011]: Reconstruction ICA
Same as [Kavukcuoglu 2010] with linear encoder and tied decoder 

[Gregor & LeCun arXiv:1006:0448,  2010] [Le et al. ICML 2012]
Locally-connect non shared (tiled) encoder-decoder

INPUT

Y
Encoder only (PoE, ICA),

Decoder Only or
Encoder­Decoder (iPSD, RICA)

Z INVARIANT
FEATURES 

∑ j
.

 ∑k ∈P j
Zk

2


L2 norm within 
each pool

SIMPLE 
FEATURES 
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Pooling Similar Features using Group SparsityPooling Similar Features using Group Sparsity

A sparse-overcomplete version of  Hyvarinen's subspace ICA

Decoder ensures reconstruction (unlike ICA which requires orthonogonal matrix)

1. Apply filters on a patch (with suitable non-linearity)
2. Arrange filter outputs on a 2D plane
3. square filter outputs
4. minimize sqrt of sum of blocks of squared filter outputs

[Jenatton, Obozinski, Bach AISTATS 2010] [Le et al. NIPS2011]
[Kavukcuoglu, Ranzato, Fergu, LeCun, CVPR 2009]
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Groups are local in a 2D Topographic MapGroups are local in a 2D Topographic Map

The filters arrange 
themselves spontaneously so 
that similar filters enter the 
same pool.

The pooling units can be seen 
as complex cells

Outputs of pooling units are 
invariant to local 
transformations of the input
For some it's translations, 
for others rotations, or 
other transformations.
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Image-level training, local filters but no weight sharingImage-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across space!)
[Gregor & LeCun 2010]
Local receptive fields
No shared weights
4x overcomplete
L2 pooling
Group sparsity over pools

Input

Reconstructed Input

(Inferred) Code

Predicted Code

Decoder

Encoder
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Image-level training, local filters but no weight sharingImage-level training, local filters but no weight sharing

Topographic maps of 
continuously-varying 
features

Local overlapping pools are 
invariant complex cells

[Gregor & LeCun 
arXiv:1006.0448] 
(double tanh encoder)

[Le et al. ICML'12] 
(linear encoder)



Yann LeCun

Image-level training, local filters but no weight sharingImage-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across space!)



119x119 Image Input
100x100 Code

20x20 Receptive field size
sigma=5 Michael C. Crair, et. al. The Journal of Neurophysiology 

Vol. 77 No. 6 June 1997, pp. 3381­3385 (Cat)

K Obermayer and GG Blasdel, Journal of 
Neuroscience, Vol 13, 4114­4129 (Monkey)
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Image-level training, local filters but no weight sharingImage-level training, local filters but no weight sharing

Color indicates orientation (by fitting Gabors)
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Theory of Repeated [Filter Bank → L2 Pooling → Average Pooling]Theory of Repeated [Filter Bank → L2 Pooling → Average Pooling]

Stéphane Mallat's “Scattering Transform”: Theory of ConvNet-like architectures

[Mallat & Bruna CVPR 2011] Classification with Scattering Operators

[Mallat & Bruna, arXiv:1203.1513 2012] Invariant Scattering Convolution 
Networks

[Mallat CPAM 2012] Group Invariant Scattering
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       Sparse Coding Using
        Lateral Inhibition

       Sparse Coding Using
        Lateral Inhibition

[Gregor, Szlam, LeCun, NIPS 2011]
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Invariant Features Lateral InhibitionInvariant Features Lateral Inhibition

Replace the L1 sparsity term by a lateral inhibition matrix

Easy way to impose some structure on the sparsity 

[Gregor, Szlam, LeCun NIPS 2011]
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Invariant Features via Lateral Inhibition: Structured SparsityInvariant Features via Lateral Inhibition: Structured Sparsity

 Each edge in the tree indicates a zero in the S matrix (no mutual inhibition)

Sij is larger if two neurons are far away in the tree
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Invariant Features via Lateral Inhibition: Topographic MapsInvariant Features via Lateral Inhibition: Topographic Maps

Non-zero values in S form a ring in a 2D topology
Input patches are high-pass filtered
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Invariant Features via Lateral Inhibition: Topographic MapsInvariant Features via Lateral Inhibition: Topographic Maps

Non-zero values in S form a ring in a 2D topology
Left: no high-pass filtering of input
Right: patch-level mean removal
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Invariant Features via Lateral Excitation: Topographic Maps Invariant Features via Lateral Excitation: Topographic Maps 

Short-range lateral excitation + L1 sparsity
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     Learning What/Where 

Features with
 Temporal Constancy

 
     Learning What/Where 

Features with
 Temporal Constancy

[Gregor & LeCun arXiv:1006.0448, 2010]
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Invariant Features through Temporal Constancy Invariant Features through Temporal Constancy 

Object is cross-product of object type and instantiation parameters
Mapping units [Hinton 1981], capsules [Hinton 2011]

small medium large

Object type Object size[Karol Gregor et al.]
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What-Where Auto-Encoder ArchitectureWhat-Where Auto-Encoder Architecture
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Low-Level Filters Connected to Each Complex CellLow-Level Filters Connected to Each Complex Cell

C1
(where)

C2
(what)
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Input

Generating from the NetworkGenerating from the Network
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         Hardware
         Implementations

         Hardware
         Implementations
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Higher End: FPGA with NeuFlow architectureHigher End: FPGA with NeuFlow architecture

Now Running on Picocomputing 8x10cm high-performance FPGA board
Virtex 6 LX240T: 680 MAC units,  20 neuflow tiles

Full scene labeling at 20 frames/sec (50ms/frame) at 320x240

New board with Virtex­6
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NewFlow: ArchitectureNewFlow: Architecture

grid of passive processing tiles (PTs)

CPU

DMA

MEM

global network­on­chip to 
allow fast reconfiguration

RISC CPU, to 
reconfigure tiles and 
data paths, at runtime

Multi­port memory 
controller (DMA)

[x20 on a Virtex6 LX240T]

[x12 on a V6 LX240T]
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NewFlow: Processing Tile ArchitectureNewFlow: Processing Tile Architecture

Term­by:­term 
streaming  operators 
(MUL,DIV,ADD,SU
B,MAX)

configurable bank of 
FIFOs , for stream 
buffering, up to 10kB 
per PT

full 1/2D  parallel convolver 
with 100 MAC units

configurable piece­wise 
linear  or quadratic 
mapper

configurable router, 
to stream data in 
and out of the tile, to 
neighbors or DMA 
ports

[x8,2 per tile]

[x4] [x8]

[x4]

[Virtex6 LX240T]

[x20]
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NewFlow ASIC: 2.5x5 mm, 45nm, 0.6Watts, 160GOPS NewFlow ASIC: 2.5x5 mm, 45nm, 0.6Watts, 160GOPS 

Collaboration NYU-Purdue (Eugenio Culurciello's group)

Suitable for vision-enabled embedded and mobile devices

Status: samples have been received and are being packaged and tested.

Pham, Jelaca, Farabet, Martini, LeCun, Culurciello 2012] 
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NewFlow: PerformanceNewFlow: Performance

IntelIntel
I7 4 coresI7 4 cores

neuFlowneuFlow
Virtex4Virtex4

neuFlowneuFlow
Virtex 6Virtex 6

nVidia nVidia 
GT335mGT335m

neuFlowneuFlow
IBM 45nmIBM 45nm

nVidianVidia
GTX480GTX480

Peak
GOP/sec 40 40 160 182 160 1350
Actual

GOP/sec 12 37 147 54 147 294

FPS 14 46 182 67 182 374
Power 
(W) 50 10 10 30 0.6 220

Embed?
(GOP/s/W) 0.24 3.7 14.7 1.8 245 1.34
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The History of Deep Learning: fast technology transferThe History of Deep Learning: fast technology transfer

1986: popularization of the back-propagation learning algorithm 

1989: first Convolutional Nets at Bell Labs (LeCun)

1992: invention of Support Vector Machines at Bell Labs (V. Vapnik)

1996: convolutional net + CRF deployed for check reading by Bell Labs

1996-2005: neural network winter.

2006: first “modern” deep learning paper by Geoff Hinton (Toronto)

2006-2010: Hinton (Toronto), Bengio (Montreal), Ng (Stanford), and 
LeCun (NYU) develop several deep learning algorithms. Deep Learning gets 
support from CifAR, NSF, ONR, and DARPA.

2011: several records are broken in speech recognition, action recognition,  
musical genre classification, and natural language processing. 

2012: Google and Microsoft deploy speech recognition systems based on 
deep learning (and more are coming....)

2012: Convolutional Nets hold records in ImageNet classification and three 
semantic segmentation benchmarks. 
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But Biological Inspiration has its LimitsBut Biological Inspiration has its Limits

L'Avion III de Clément Ader, 1897
 (Musée du CNAM, Paris)

It's nice to imitate Nature,

But we also need to 
understand

How do we know which 
details are important?

Which details are simply the 
result of evolution, and which 
are due to biochemistry?

For airplanes, we developed 
aerodynamics and 
compressible fluid dynamics.

We figured that feathers and 
wing flapping weren't crucial

What is the equivalent of 
aerodynamics for 
understanding intelligence?
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   The End   The End
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