

DIRECTORATE FOR BIOLOGICAL SCIENCES

Dr. John C. Wingfield Assistant Director

April 26, 2012

NATIONAL SCIENCE FOUNDATION FISCAL YEAR

BUDGET REQUEST

BIO FY 2013 Budget Request

TOTAL, BIO R&RA: \$733.86 million, +3.0%

Research: \$552 million

Learning: \$30 million

Infrastructure: \$141 million

Administration: \$11 million

NEON 3rd Year Construction:

\$91 Million

Federal Support for Basic Research in Non-Medical Biological Sciences at Academic Institutions

BIO FY 2013 Budget Request

Biological Sciences Funding

(Dollars in Millions)

	FY	FY 2012	Change Over		
	2011	Current	FY 2013 FY 2012 Estimate		
	Actual	Plan	Request	Amount	Percent
Molecular and Cellular Biosciences MCB)	\$123.93	\$125.79	\$132.68	\$6.89	5.5%
Integrative Organismal Systems (IOS)	212.56	212.33	220.52	8.19	3.9%
Environmental Biology (DEB)	142.72	142.56	143.73	1.17	0.8%
Biological Infrastructure (DBI)	129.28	126.18	129.68	3.50	2.8%
Emerging Frontiers (EF)	103.79	105.52	107.25	1.73	1.6%
Total, BIO	\$712.27	\$712.38	\$733.86	\$21.48	3.0%

Totals may not add due to rounding.

Grand Challenges for 21st Century Biology

Genomes to Phenomes

Synthesizing Life

BIO CORE PROGRAMS

Neural Systems

Biological Diversity

Earth, Climate, & Biosphere

Five Grand Challenges

[From 2009 National Research Council Report]

All BIO Core Programs + \$20 million

- 1. Synthesizing Life-Like Systems
- 2. Genomes to Phenomes
- 3. The Brain: NeuroSystems
- 4. Earth, Climate, and Biosphere
- 5. Biological Diversity

Synthetic Biology

Synthesizing functional genomes and useful compounds

Synthetic chromosome arms in yeast generate phenotypic diversity by design

J. Boeke, NATURE 477: 471; 2011 (NSF)

Yeast cells

Metabolic engineering using microbes to synthesize the Malaria drug artemisinin andthe polyester intermediate 1,3-propanediol

J. Keasling, Science 330:1355; 2010 (NSF)

Genomes to Phenomes

Links genomes to ecosystems to understand the history of our planet and identify possible sustainable futures

Community DNA

Ecosystem Metabolism

EVOLVING GENOMES

EVOLVING POPULATIONS

CHANGING ECOSYSTEMS

Gene Expression Directly Determines Animal Body Plan (Phenotype)

- 1. Hox gene families occur throughout the animal kingdom.
- 2. Differential Hox gene expression specifies the organization of the animal body plan during development.

Organism - Environment Interactions

The adaptation or extinction of a species depends on its ability to:

1. Anticipate predictable events such as day/night cycles

2. Respond to unpredictable events such as severe storms

or climate change

Antarctic snow petrel

Earth, Climate and Biosphere Understanding how living systems respond to environmental change

The National Socio-Environmental Synthesis Center

> Long-term Ecological Research Program (BIO, GEO, OPP)

ITER

National Ecological Observatory
Network

Cyber-Enabled Observatories, Synthesis Centers, and Long Term Ecological Research Programs

Biodiversity: Multiple sources and approaches

Dimensions of Biodiversity

[BIO, GEO, OISE, OPP, Brazil, China]

A multi year effort to characterize the dimensions of biodiversity at the intersections of three areas

Neural Systems: Understanding the Brain

Comparative approaches reveal how the brain evolved and

functions, and about the evolution of complex behavior

- SEES Science, Engineering, and Education for Sustainability
- BioMaPS Intersections of Biological, Mathematical and Physical Sciences
- CIF21 Cyberinfrastructure Framework for 21st Century Science and Engineering
- CEMMSS Cyber-Enabled Materials, Manufacturing & Smart Systems
- I-Corps Innovation Corps
- INSPIRE Integrated NSF Support Promoting Interdisciplinary Research and Education

Science, Engineering, and Education for Sustainability (SEES)

Interdisciplinary research to understand human systems, biological systems, and educate the next generation of scientists.

BIO contributions to SEES:

- Core research programs in all four divisions
- Coupled Natural and Human Systems
- Dimensions of Biodiversity
- Ocean Acidification
- Sustainability Research Networks
- SEES Research Coordination Networks
- SEES Fellows

Biological, Mathematical & Physical Sciences and Engineering (BioMaPS)

 Goal: Discover fundamental new knowledge at the intersections of the biological, mathematical and physical sciences and engineering

- FY 2013 priorities:
 - Accelerate understanding of biological systems to enable innovation in clean energy, climate science, and advanced manufacturing
 - Attract future scientists and engineers

 Structural basis for
 photosynthetic energy capture
 revealed by supercomputer
 simulation and modeling

Photosynthetic Membrane Vesicle K. Schulten, UIUC

CLEAN ENERGY

Natural energy transduction systems can inspire biology-based technologies capable of delivering sustainable clean energy.

Platinum -Photosystem I nanoparticle that produces hydrogen fuel

Barry Bruce, Univ. TN Knoxville

Cyber-Enabled Materials, Manufacturing & Smart Systems (CEMMSS)

K. Autumn, Lewis & Clarke Col.

Stickybot: Biology inspired synthetic adhesive that mimics gecko feet for climbing. Developed by an engineer and a biologist M. Cutkosky, Stanford Univ.

Caterpillar Manduca sexta

Barry Trimmer, Tufts University

Softbot: Biology inspired locomotion over irregular surfaces

Applications bazardous

Application: hazardous environments.

INSPIRE Awards

- CREATIV Second year of the CREATIV pilot grant awards
 - Open to all NSF-supported fields
 - Typically for an individual PI or a small team
 - Proposals must be interdisciplinary and potentially transformative
 - Internally merit-reviewed by program directors with option for external expert review where needed
- New open pilot mechanism under INSPIRE to begin in FY 2013
 - Larger "mid-scale" interdisciplinary awards
 - Utilize novel internal & external merit review approaches

BIO Cyber Activities

- CIF21 Cyberinfrastructure Framework for 21st
 Century Science and Engineering
 - SI² Software Infrastructure for Sustained Innovation
- ADBC- Advancing Digitization of Biological Collections
- iPlant Collaborative
- DRYAD Digital Data Repository
- NIMBIOS National Institute for Mathematical and Biological Synthesis
- NEON National Ecological Observatory Network

The Biology DATA Dilemma

"Technology gives us the tools to analyze organisms at all scales, but we are drowning in a sea of data and thirsting for some theoretical framework with which to understand it."

> Sydney Brenner (Nobel Laureate) Nature **482**: 461, February 23, 2012

First Human Genome
Sequence (2003) took
~ 12 Years at a cost of
~ \$2.7 Billion

lon Proton Sequencer
Life Technologies

Milestone: \$1000 human genome in a

BIO Big Data Issues

- One data solution or many (e.g., Genbank, Protein Data Bank, Digital Data Repository)
- What data are saved and for how long legacy data and new data? (e.g. iPlant, LTER, NEON)
- Common standards for adding/annotating data to ensure broad access and interoperability?
- How will access to data be provided?
- How and where will data be stored?
- Who pays? Who is in charge?

STEM Education

- Transforming Undergraduate Biology Education (TUBE)
- Expeditions in Education (E²)
 - New Age Cyber Learning

iPlant - DNA Subway

E²: Expeditions in Education engage, empower, and energize

Transform STEM learning for the Nation through cognitive research and frontier science.

Focus Topics for 2013:

- Transforming Learning for STEM Undergraduates
- People and the Planet
- Cyberlearning and Big Data

E² Investments will:

- -Make frontier science central
- -Use theory and research on STEM learning
- Aim for bold learning outcomes
- Commit to common metrics
- -Involve all NSF directorates and offices

National Ecological Observatory Network (NEON)

Unique platform for regional to continental scale environmental research

Research platform for all BIO, from molecules to the biosphere

Long-term measurements with standardized infrastructure, procedures, quality control

Free and open data access policy for near real time data

Decision support tools

Potential network with international observatories for global scale research

National Ecological Observatory Network (NEON)

- MREFC \$91M, Year 3 of 6 years of construction
 - Civil and facility construction in 15 of 106 neon sites
 - Stream Experimental and Observatory Network (STREON) construction will begin
- R&RA \$30M for Management and Operations; \$3M for Concept & Development :
 - 15 Sites: 10 Sites constructed in FY12, 5 in FY13
 - Airborne Observatory
 - Calibration and Validation Laboratory
 - Data Center

Programs in International Science

Basic Research to Enable
Agricultural Development
BREAD

NSF, Bill & Melinda Gates Foundation

Metabolomics for a Low Carbon Society BIO & JST

BIO: Opportunities & Challenges

- BIO: The Five Grand Challenges
- Undergraduate Biology Education
- The Data Dilemma
- Broadening Participation
- Public Outreach

Thank you.

Questions?

www.nsf.gov/about/budget/fy2013/index.jsp

