Skip To Content
NSF Logo Search GraphicGuide To Programs GraphicImage Library GraphicSite Map GraphicHelp GraphicPrivacy Policy Graphic
OLPA Header Graphic

NSF Press Release


Embargoed until 2 p.m. Eastern Time
NSF PR 03-93 - September 4, 2003

Media contact:

 Cheryl Dybas

 (703) 292-7734

Program contact:

 Henry Gholz

 (703) 292-8481

Microbes Active in Colorado Snows Fuel Tundra Ecosystem

Niwot Ridge LTER site
"Microbial-level investigations are integral to developing an overall understanding of the alpine ecology at Niwot Ridge LTER site in the Colorado front range."
Photo by Timothy Seastedt, Niwot LTER
Select image for larger version
(Size: 59KB)

 Note About Images

Arlington, Va.—Populations of fungi blanketed by Colorado's snows are more active and diverse than previously thought, and are likely responsible for the productivity of the tundra ecosystem they are a part of, according to findings by scientists funded through the National Science Foundation (NSF)'s Long-Term Ecological Research (LTER) and Microbial Observatories programs. The researchers have published their results in this week's issue of the journal Science.

Christopher Schadt, now of the Department of Energy's Oak Ridge National Laboratory in Tennessee and a former graduate student at the University of Colorado at Boulder, said "the discovery should help scientists gain greater insight into decomposition rates, carbon cycles and the roles of individual fungi in those processes." Surprisingly, the number of active microorganisms in tundra soils, for at least the top 10 centimeters, (about four inches) peaks when the soils are covered with snow. Schadt and colleagues performed their research at the Niwot Ridge, Colo., LTER site. Niwot Ridge is located some 12,000 feet atop the Rocky Mountains.

"The finding that microorganisms are interacting with tundra soils to a great extent highlights the important role of the snowpack in creating a unique and crucial environment in tundra ecosystems in Colorado and likely in other locations that are covered with snow for long periods of time in winter," said Henry Gholz, LTER program director at NSF.

Metabolism of snow-covered microbes is an important biogeochemical "sink," or way of storing, nitrogen. "The subsequent release in spring of nitrogen from the microbes' metabolism is a major contributor to the relatively high productivity during the short growing season in the tundra," said Steven Schmidt of the University of Colorado at Boulder, a co-author of the Science paper, and leader of the research team.

Schadt, Schmidt, and colleagues Andrew Martin of the University of Colorado and David Lipson of San Diego State University also found that fungi account for most of the biomass of the tundra, which undergoes significant seasonal changes. The researchers discovered that about 40 percent of the fungi in their samples were previously unknown. DNA sequencing enabled them to identify fungi that may hold answers to other questions about the tundra ecology in Colorado and in other locations around the world.


The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Useful NSF Web Sites:
NSF Home Page:
News Highlights:
Science Statistics:
Awards Searches:



National Science Foundation
Office of Legislative and Public Affairs
4201 Wilson Boulevard
Arlington, Virginia 22230, USA
Tel: 703-292-8070
FIRS: 800-877-8339 | TDD: 703-292-5090

NSF Logo Graphic