Email Print Share

Remarks

Photo of Arden Bement

Dr. Arden L. Bement, Jr.
Director
National Science Foundation
Biography

"Crossing Frontiers in a Connected World"
Korea Science and Engineering Foundation
30th Anniversary Symposium
Seoul, Korea
June 14, 2007

If you're interested in reproducing any of the slides, please contact the Office of Legislative and Public Affairs: (703) 292-8070.

See also: news coverage of Dr. Bement's visit in the Korean media.

Title slide title: Crossing Frontiers in a Connected World

Slide words: Dr. Arden L. Bement, Jr. 
Director, National Science Foundation
KOSEF 30TH Anniversary Symposium 
Seoul, Korea 
June 14, 2007

Slide image: Computer image showing a "circular bent helicoid," a new type of mathematical object

Credit: Matthias Weber, Indiana University

Ahn-yung-haseem-nee-GHAAH. Dr. Choi, Dr. Kim, and distinguished guests, good morning. I am delighted to convey to you greetings and good wishes from all my colleagues at the National Science Foundation.

I am honored to be here among so many distinguished scientists, nobel laureates, engineers, and statesmen to celebrate the 30th anniversary of the Korea Science and Engineering Foundation. Congratulations on 30 years of exceptional accomplishments in advancing science and engineering.

Slide images: View of Earth from space with Asia visible and with the moon in the distance; Korean and United States flags; logos of the Korea Science and Engineering Foundation (KOSEF) and the National Science Foundation (NSF)

Credit: NASA (Earth)

Since the earliest days, KOSEF and NSF have shared a common goal: to seek out and support the very best research, and work in collaboration as fully and effectively as possible. We celebrate today because we have great expectations for continuing good will and increased cooperation. The challenge--and the opportunity--is to fashion new partnerships to explore the frontiers of knowledge and strengthen science and engineering education.

My remarks today emphasize a single theme: international cooperation in research and education is not a luxury; it is a necessity—and the foundation for all of our futures. The issue for research funding agencies is no longer whether we should work together, but how we can work together more effectively--smarter, faster, cheaper, and with greater impact on the generation of new knowledge and the development of innovative technologies.

Slide title: The Conduct of Science is Changing

Slide words: 
Networks
Cyberinfrastructure
Multidisciplinary research
Collaboration
Shared facilities

Science and technology have always been a powerful force for human progress. Today, more than ever before in history, we have the opportunity and the capability to advance global prosperity as we expand the frontiers of knowledge. Our commitment to international collaboration will determine how effective we are in realizing this great potential.

Information and communications technologies have made interdependence a defining characteristic of today’s world. These revolutionary technologies have also transformed the science and engineering enterprise, giving rise to increasingly productive links across disciplines and a highly connected global community of scientists and engineers.

Slide words: 
Increasing bandwidth and high-speed networks

Slide image: Still from a Global Ring Network for Advanced Applications Development (GLORIAD) animation showing a north polar view of the earth and the GLORIAD high performance network that encircles the globe. The image shows the network connecting the following cities: Amsterdam, Moscow, New York, Chicago, Novosibirsk, Calgary, Seattle, Beijing, Hong Kong, Daejeon, Khabarovsk.

Credit: Trent L. Schindler, National Science Foundation (animation); Nicolle Rager Fuller, National Science Foundation (screen capture and update)

Networks--conceptual and personal, physical and virtual, and above all, global--define our world today. In science and engineering research, they are nothing short of revolutionary. This is a message that Koreans, the most "connected" people in the world, have already taken to heart.

Consider this ring of light encircling the northern hemisphere. The network racing along this optical ring carries millions of bits of information every second. Entire libraries and hundreds of simultaneous video conferences can move across the network in minutes. We can work together, share resources, data and experiences using the most advanced collaborative technologies and scientific instruments distributed across thousands of miles.

NSF and the Korea Institute of Science and Technology Information (KISTI) have been partners, together with Russia, the Netherlands, China and Canada in creating GLORIAD, a modern tool of communication and collaboration.

At the center of all disciplines and research programs is the need for a comprehensive cyberinfrastructure. At the National Science Foundation, one of our priorities is moving forward aggressively to support the development of these new tools for increased cooperation.

To realize the potential of collaboration, researchers need widely shared and interoperable cyberinfrastructure, as well as a rich mix of tools that suit the needs identified by a particular science or engineering community.

Slide words: 
Cyberinfrastructure

Slide image: Graphic from the cover of the 2006 Pacific Rim Applications & Grid Middleware Assembly (PRAGMA) annual report showing a photograph of the participants from the PRAGMA 11 Conference (Osaka, Japan, in October 2006) visible through the PRAGMA logo

Credit: Jennifer Matthews, Principal Publications Coordinator, SIO/UCSD

We need strong international cooperation to ensure that our cyberinfrastructure is broadly accessible and compatible. The Pacific Rim Application and Grid Middleware Assembly--PRAGMA for short--is conducting research to enhance grid applications and to develop grid middleware in the Pacific Rim region. Korea Basic Science Institute is an important partner in the PRAGMA community.

Slide words: 
Multidisciplinary research
Multidisciplinary Research on Avian Flu

Slide image: Map of the world showing the nations with confirmed cases of Avian Influenza (H5N1) as of February 2007. The following areas are indicated on the map:
H5N1 in wild birds
H5N1 in poultry and wild birds
H5N1 in humans

Source: http://pandemicflu.gov

PRAGMA also illustrates another characteristic of contemporary research. This March, researchers at the University of California, San Diego and the University of Hawaii, working in collaboration with five Asian institutions,1 launched a new project that will use PRAGMA resources, bioinformatics, grid computing and networking infrastructure to learn more about avian flu. The aim is to head off a much-feared pandemic.

Slide words: 
Baek Jit Jang Do Mat Tul Myun Gah Byup Dah
Many hands make light work
International collaboration

Slide image: photo of ten hands one on top of another

Credit: © 2007 JupiterImages Corporation

This convergence of disciplines and the cross-fertilization that characterizes contemporary science and engineering has made collaboration a necessity. Networks have made it a reality.

Scientists can now collaborate with such ease that any research project, large or small, is grist for the partnership mill. The upshot is that fresh concepts can--and regularly do--migrate across borders.

Slide words: 
Shared facilities

Slide Image: A photograph of the drill-ship JOIDES Resolution on the open ocean conducting ocean drilling

Credit: www.iodp.org (Integrated Ocean Drilling Program)

International cooperation is also becoming the accepted way to fund large facilities projects that cost too much for any single nation to fund. The Integrated Ocean Drilling Program (IODP) is one example. The IODP is a multinational program of scientific research in the oceans which uses drilling and data logging. The IODP aims to undertake research on earth system processes ranging from changes in the earth’s climate to the rifting and drifting of continents.

The NSF and Japan's Ministry of Education, Culture, Sports, Science and Technology (MEXT) sponsor two world class drill ships that are available to research partners worldwide. The European Union Consortium for Ocean Drilling (ECORD) is a contributing member. Just this past year, The Korea Institute of Geosciences and Mineral Resources joined China’s Ministry of Science and Technology as an associate member.

Slide words:
Science and Engineering in a Knowledge Economy

Investments in education, research and infrastructure are the key elements driving the global economy…
Creating economic and societal benefits…
And providing global solutions for global dilemmas

Slide image: View of Earth from space with Asia visible

Credit: NASA

Investments in education, research and infrastructure are the key elements driving the global economy. Without them, the knowledge necessary to impel technological innovation would soon dry up.

Nations continue to boost investments in research and development to build economic momentum. The US, for example, has made a commitment to double funding for physical science and engineering research over the next decade. Other nations are on track to reach an investment target of three percent of GDP. Korea is notable for its recent spectacular record in increasing funding for discovery and innovation.

Just as important, we are on the threshold of finding global solutions for many long-standing global dilemmas. The payoff from increased funding and improved collaboration will be greater progress in solving problems that confront societies around the globe--from earthquake engineering, to environmental change, to excellence in education.

Slide words:
Defining Characteristics of Science and Engineering in the 21st Century
Increasing use of merit review 
Integration of research and education 
Expanding international collaboration

As science and technology become more central to global prosperity, the task of managing the quality of the research enterprise is taking on greater proportions. Three themes are central to effective policy in today’s research and education environment.

The first is the use of competitive, merit peer review to bring forward the brightest ideas from the research community. Merit review is increasingly accepted as the "gold standard" of research management. As collaboration increases, there is growing recognition that new international arrangements are necessary, including a process for international merit review. Smaller countries are already cooperating to develop an adequate pool of peer reviewers.

A preeminent principle at NSF is integrating research and education. In this way, we literally train the next generation of scientists and engineers by combining their studies with laboratory research. This principle also underlies our approach to international research and education.

Slide words: 2007 EAPSI Graduate Students and Advisors: Korea

Slide image: photo of East Asia and Pacific Summer Institutes (EAPSI) graduate students and advisors in Korea in 2007

Credit: Courtesy of the EAPSI Program in Korea

The NSF East Asia and Pacific Summer Institutes Program has operated in cooperation with KOSEF since 1995. This summer, another group of U.S. students is here in Korea to study and work with distinguished researchers. In fact, I had the pleasure of meeting these talented young people yesterday. We greatly appreciate the generous efforts of all the Korean scientists who provide these exceptional opportunities for U.S. students.

Through their experiences in Korea and other eastern Asia and Pacific countries, students expand the boundaries of understanding--personally, culturally, and scientifically. They build skills that will make them effective collaborators and communicators of science--skills that they can draw on throughout their careers.

Finally, I come full circle to international collaboration. Scientists and engineers around the globe are embracing international partnerships and working collaboratively at unprecedented levels.

So, how should we proceed? We should pursue more global involvement, not less. That means finding new ways to encourage and bolster cooperation. Let me suggest some ways forward.

Slide words: What Governments Can Do 
Open communication and information sharing
Policy of positive inclusion for all nations
Extension of cyberinfrastructure around the world
Expansion of distributed learning resources
Promotion of bilateral and multilateral exchanges
Attract more students to careers in science, engineering

As a prerequisite to progress, we must maintain open communication and a receptive stance toward cooperation. Those of us who head funding agencies are in a better position than most to follow global trends persistently. We must keep channels open to coordinate the gathering and sharing of information. That will alert us to new developments as the terrain unfolds, and help us determine how best to respond.

More broadly, we should adopt a policy of positive inclusion, welcoming developing nations into the mainstream of international science and engineering research. Information technologies offer vastly expanded opportunities for developing nations to participate in world class research, and to do so cost effectively.

The extension of fiber optics beyond the major networks that link more developed nations would remove a major impediment to the full participation of developing nations. Funding these networks in the interest of social and economic progress is a role the private sector could assume, and research councils should promote this outcome.

Greater access to global broadband networks will also extend opportunities for higher education to the developing world in a cost-effective way through digital libraries, data banks, and the full panoply of rapidly evolving distributed learning opportunities available on the Web. Once again, we must find ways to deliver these educational resources in a coordinated way that ensures access to all. Talent resides in every nation, and will flourish once access to quality education is readily available.

We can increase scientific productivity and efficiency worldwide by building shared international research facilities, drawing upon one pot of money. This would be a win-win situation. All benefit from access to more kinds of instruments rather than more instruments of a kind.

Finally, we can all increase efforts to attract more students to careers in science, engineering, technology and mathematics. Young people in many nations--including developing countries--are opting out of STEM careers, exacerbating the global shortage, and endangering the future of the science and engineering enterprise.

Just last year, KOSEF and NSF jointly sponsored a workshop in Korea to explore the reasons that more talented and gifted students are not choosing education in STEM careers. We need to work together to find solutions for this dilemma. This workshop is one of many that KOSEF and NSF have sponsored over the years.

Opportunities to meet face to face and to work together through exchange programs are the basis for friendships that enrich our collaborations and our lives. This is particularly true for students and young scientists on the threshold of their careers.

Last year, researchers supported by NSF and Korea's Ministry of Science and Technology joined in the third U.S.-Korea workshop on nanotechnology. Nanoscale science and engineering are a priority in both the U.S. and Korea. These workshops provide opportunities for investigators to form friendships and to explore opportunities for collaboration in areas of mutual scientific interest.

Slide not available. 

These opportunities for promising research may not mature unless investigators know that there is strong support for longer-term collaborative research. For this reason, NSF recently launched Partnerships for International Research and Education (PIRE). This initiative will help U.S. universities and other institutions forge stronger links with counterparts around the world. The aim is to foster research and education activities that neither partner could accomplish on its own.

I am pleased that proposals for U.S.-Korea cooperation are currently under consideration for PIRE funding after a very competitive review process.

These examples only touch the surface of very deep and vibrant relationships between KOSEF, other Korean organizations, and NSF. Indeed, many of the visiting guests with us today are also valued partners of NSF. Our work is clearly before us, but we have already accomplished a great deal together.

Slide not available. 

Whether we meet in a circle of friends, as we do today ....

Slide image: Photo of a virtual handshake through a graphic display

Credit: University of North Carolina

or reach out across the vast distances of cyberspace, we can hope to reach common goals sooner rather than later by working together. On behalf of NSF, I look forward to working with all of you in the years to come.

Gham-sah-hum-nee-dah. Thank you.


1 Five non-U.S. partners have pledged to fund collaboration on the avian flu virus project: Japan's National Institute for Advanced Industrial Science and Technology (AIST); China's Jilin University (JLU) and Computer Network Information Center (CNIC); the Korea Institute for Science and Technology Information (KISTI) and Konkuk University (KU); and Malaysia's University Sains Malaysia (USM). NSF does not support this research directly, but does indirectly through its support of PRAGMA.
Return to speech