text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 12-045
Researchers 'Print' Polymers That Bend Into 3-D Shapes

Technique could be used to direct growth of blood vessels or tissues in the laboratory

Image illustrating how a two-dimensional sheet can bend into a three-dimensional shape.

Researchers can control the shape of a polymer system with a technique akin to half-tone printing.
Credit and Larger Version

March 8, 2012

Christian Santangelo, Ryan Hayward and colleagues at the University of Massachusetts Amherst recently employed photographic techniques and polymer science to develop a new technique for printing two-dimensional sheets of polymers that can fold into three-dimensional shapes when water is added. The technique may lead to wide ranging practical applications from medicine to robotics

The journal Science publishes the research in its March 9 issue.

Researchers used a photomask and ultraviolet (UV) light to "print" a pattern onto a sheet of polymers, a technique called photolithography. In the absence of UV exposure, the polymer will swell and expand uniformly when exposed to water, however when polymer molecules within the sheet were exposed to UV light they became crosslinked--more rigidly linked together at a number of points--which prevented them from expanding when water was added. Patterning the amount of crosslinking across an entire sheet allowed researchers to control how much each area swelled. A second exposure to a carefully selected pattern of UV light allowed them to create specific 3-D shapes.

The work, supported by National Science Foundation (NSF) Faculty Early Career Development and Materials Research Science and Engineering Centers awards, is a collaborative effort between polymer engineering and physics, with both theoretical and experimental aspects.

"This paper reports an interesting fusion of experimental technique and theory to develop an innovative method for making self-actuating materials that will assume a desired three-dimensional shape," said Daryl Hess, a program director in the division of materials research at NSF.

For more information on this discovery, read the news release from the University of Massachusetts Amherst.

-NSF-

Media Contacts
Lisa Van Pay, NSF, (703) 292-8796, lvanpay@nsf.gov
Janet Lathrop, University of Massachusetts Amherst, (413) 545-0444, jlathrop@admin.umass.edu

Program Contacts
Daryl W. Hess, NSF, (703) 292-4942, dhess@nsf.gov

Principal Investigators
Christian Santangelo, University of Massachusetts Amherst, (413) 545-2099, csantang@physics.umass.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Cover of the March 9, 2012 issue of the journal Science.
The researchers' work is described in the March 9, 2012 issue of the journal Science.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page