Email Print Share

News Release 13-093

Understanding Biodiversity Patterns in Nature: It Takes Two Fields--Ecology and Evolutionary Biology

Study of salamanders in ponds demonstrates 'invisible finger of evolution'

Spotted salamander on a leaf

Spotted salamander: along with the marbled salamander, key to patterns of biodiversity.


May 28, 2013

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

What do marbled and spotted salamanders in ponds in eastern North America have to teach us about biodiversity patterns elsewhere on Earth?

Plenty, if research conducted by biologist Mark Urban of the University of Connecticut is any guide.

In a paper published today in the journal Proceedings of the Royal Society B, Urban reports results that may fundamentally change how scientists view the importance of evolution in ecological research.

"This project looked closely at the separate and interactive contributions of genetic and environmental factors in shaping pond food webs," says Alan Tessier, program director in the National Science Foundation (NSF)'s Division of Environmental Biology, which funded the research.

"The results add to a growing understanding of the importance of genetic variation within species, and of eco-evolutionary processes in explaining patterns of biodiversity."

The findings show that the evolutionary divergence of populations is as important as biodiversity patterns based on ecological features, such as the presence of a top predator.

In this study, the subjects were the marbled salamander, an apex, or, top predator, in temporary ponds; the spotted salamander; and their shared zooplankton prey.

The marbled salamander breeds in the autumn. Its larvae grow under the ice of ephemeral ponds during winter.

As a result, marbled salamander larvae eat zooplankton all winter--and grow large enough to eat the spotted salamander larvae that hatch in these same ponds in late spring.

But Urban discovered that spotted salamanders sharing space with marbled salamanders have evolved so that they're born with voracious appetites.

Their increased foraging makes sense, he says, given that these salamanders live in ponds largely depleted of zooplankton prey, due to the presence of marbled salamanders.

The smaller salamanders need to grow quickly to reach a size at which marbled salamanders can't easily capture them.

"The evidence suggests that the repeated evolution of high foraging rates in spotted salamanders is an adaptive response to marbled salamander predation," says Urban.

Knowing how apex predators such as marbled salamanders structure biological communities, he says, requires that scientists understand their direct ecological effects as predators, and their indirect effects via the natural selection they impose.

"Finding that adaptive evolution may disguise strong ecological effects means that a range of ecological predictions are likely to be unreliable if we ignore how evolution affects biological communities."

Urban refers to this as "the invisible finger of evolution" which, he says, may tip the scales toward or away from ecological influences.

"That the effect of an apex predator can be so strong that it causes evolutionary responses in other species," he says, "shows that ecology and evolution are inexorably intertwined."

-NSF-

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, email: cdybas@nsf.gov
Sheila Foran, University of Connecticut, (860) 486-3530, email: sheila.foran@uconn.edu

The U.S. National Science Foundation propels the nation forward by advancing fundamental research in all fields of science and engineering. NSF supports research and people by providing facilities, instruments and funding to support their ingenuity and sustain the U.S. as a global leader in research and innovation. With a fiscal year 2023 budget of $9.5 billion, NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and institutions. Each year, NSF receives more than 40,000 competitive proposals and makes about 11,000 new awards. Those awards include support for cooperative research with industry, Arctic and Antarctic research and operations, and U.S. participation in international scientific efforts.

mail icon Get News Updates by Email 

Connect with us online
NSF website: nsf.gov
NSF News: nsf.gov/news
For News Media: nsf.gov/news/newsroom
Statistics: nsf.gov/statistics/
Awards database: nsf.gov/awardsearch/

Follow us on social
Twitter: twitter.com/NSF
Facebook: facebook.com/US.NSF
Instagram: instagram.com/nsfgov