text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Social, Behavioral & Economic Sciences (SBE)
Social, Behavioral & Economic Sciences (SBE)
design element
SBE Home
About SBE
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
See Additional SBE Resources
View SBE Staff
SBE Organizations
Behavioral and Cognitive Sciences (BCS)
National Center for Science and Engineering Statistics (NCSES)
Social and Economic Sciences (SES)
SBE Office of Multidisciplinary Activities (SMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional SBE Resources
Exploring What Makes Us Human
Rebuilding the Mosaic Report
Bringing People Into Focus: How Social, Behavioral & Economic Research Addresses National Challenges
"Youth Violence: What We Need to Know" Report to NSF
Social, Behavioral and Economic Research in the Federal Context Report
Expedited Review of Social and Behavioral Research Activities Report
SBE Advisory Committee Web Site (for members only)
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page


Press Release 12-174
How Is Earth's Water System Linked With Land Use, Climate Change and Ecosystems?

Answers may be in new NSF Water Sustainability and Climate research

Aerial photo of Colorado's South Platte River.

A WSC project will look at Colorado's South Platte River: From mountains to urban lands.
Credit and Larger Version

September 24, 2012

How will climate change affect the connections between water sustainability and hydrologic processes?

To better understand how planet Earth's water cycle works, the National Science Foundation (NSF) and the United States Department of Agriculture's National Institute of Food and Agriculture (NIFA) awarded grants totaling almost $27 million through the Water Sustainability and Climate program.

WSC is part of NSF's Science, Engineering and Education for Sustainability investment.

NSF's Directorates for Geosciences; Engineering; and Social, Behavioral & Economic Sciences support the WSC awards.

"Among the most urgent challenges facing the world today is ensuring the adequate supply and quality of water, especially in light of burgeoning human needs and climate variability and change," says Marge Cavanaugh, NSF acting assistant director for Geosciences.

"Whereas the water imperative is global, WSC recognizes that water availability and quality issues must be examined at local scales where most water decisions are made," says Cavanaugh. "That's why WSC projects are placed-based, and each examines how global and regional climate changes are playing out in terms of water balance at the local scale."

WSC Category 1 awards are workshop planning grants; WSC Category 2 grants cover observatories and modeling; WSC Category 3 awards are for modeling.

"Water is a critical component to the success of American agriculture, yet there is a lack of understanding of how climate variability, land use and other environmental factors affect the water supply," says Sonny Ramaswamy, director of the National Institute of Food and Agriculture. "These projects will allow us to better understand water sustainability and allow our producers and rural communities to prepare for future changes."

The goal of the new WSC projects--including studies of Rocky Mountain pine beetles, Los Angeles' water supply and the Sierra Nevada snowpack--is to understand and predict the interactions of Earth's water system with climate change, land use, the built environment and ecosystem function and services.

For example, more than four million acres of forests in Colorado and Wyoming are dying. The main culprit is the mountain pine beetle, a species of bark beetle native to the woodlands of western North America. Recent hot, dry summers and mild winters have led to an infestation of the beetles.  It may be the largest forest insect blight ever seen in North America.

The result is stunning: dead trees lined up like so many fallen forest soldiers. But the invisible changes in watersheds in the Rocky Mountains, including the headwaters of the Platte and Colorado Rivers, may be a longer-lasting legacy.

Farther west, Los Angeles, like many cities in semi-arid regions, relies on centralized redistribution for its water supply. Water is transported hundreds of miles from mountain to city to support agricultural and urban needs in southern California. But water allocations from the mountain sources that feed L.A.'s water supply are declining.  Drought, over-extraction and competing water needs have taken their toll.

In many arid and semi-arid regions of the world, including much of the western United States, water resources management plans are based on the assumption that the snowpack that accumulates in winter holds the majority of the water. This snowpack gradually melts, replenishing reservoirs as their supplies are meted out to satisfy human water and power demands.

Nowhere is that more true than in California's Sierra Nevada. This remote and sparsely populated mountain range supplies water and power for millions of people downstream. Will the Sierras be able to sustain that supply in the decades and centuries to come?

Only 2.5 percent of Earth's water is freshwater, and 98.8 percent of that is locked away in ice or hidden in groundwater. Less than 0.3 percent of all freshwater is in lakes, rivers and the atmosphere.

How can we better manage and predict water availability for future generations, given alterations to the water cycle caused by climate change and by more direct human activities?

The answers require a holistic understanding of complex water cycle and water resource processes, the feedbacks in a water system, and the vulnerability and resilience of water systems to climate and other human-caused change.

A water system comprises a drainage basin and its physical, chemical and biological constituents, including water networks, ecosystems, the built environment, the oceanic and atmospheric systems that govern evaporation and precipitation in the basin and the source water bodies and terminal lakes or seas into which the water flows.

There have been few attempts to study the entire water system with an integrative, systems science approach. WSC researchers will do just that.

This analysis of the planet's water system--of the feedbacks and links among climate change, ecosystems, built environments and human activities--will lead to the improved understanding, prediction and management of water resources, scientists believe.

"Earth has approximately 1,386 million cubic kilometers of water, most of which is the saltwater of oceans and seas," says Cavanaugh.

"What decisions will we make about the rest, the freshwater that's 'technically' available to us? Those decisions are for societies to make, and water sustainability researchers are working through WSC to fully inform those complex decisions."

NSF Science, Engineering and Education for Sustainability WSC 2012 awardees and their research projects are:

Brozovic, Nicholas, University of Illinois at Urbana-Champaign:
WSC-Category 1: Development of an Integrated Economic-Hydrologic-Ecologic Framework for Resilient Surface Water-Groundwater Management

Duke, Joshua, University of Delaware:
WSC Category 1 Water Sustainability in Coastal Environments: Exploratory Research for an Integrated Study of the Effect of Anticipated Sea Level Rise on Contaminated Site Risk

Felkner, John, Florida State University:
WSC-Category 1: Integrative Modeling of the Interactions, Connectivity and Interdependence of Water Systems and Ecosystem Services in the Lower Mekong Basin

Johannesson, Karen, Tulane University:
WSC-Category 1: From Natural Wetland to Murky Water: Cross-disciplinary Analysis of a Drowning Urbanized Coast

Arumugam, Sankarasubraman, North Carolina State University:
WSC- Category 3: Collaborative Research: Water Sustainability under Near-term Climate Change : A Cross-regional Analysis Incorporating Socio-ecological Feedbacks and Adaptations

Pataki, Diane, University of Utah:
WSC-Category 3: Collaborative: The Role of Local Water Resources in the Water Sustainability of Los Angeles

Arabi, Mazdak, Colorado State University:
WSC-Category 3: Assessing Water Management Tradeoffs and Targets under Climatic and Land Use Uncertainty

Molotch, Noah, University of Colorado at Boulder:
WSC Category 3, Collaborative Research: Snowpack and Ecosystem Dynamics: The Sustainability of Inter-basin Water Transfers under a Changing Climate

Orr, Cailin, Washington State University:
WSC-Category 3: Watershed Integrated System Dynamics Modeling (WISDM): Feedbacks among Biogeochemical Simulations, Stakeholder Perceptions, and Behavior

Harmon, Thomas, University of California - Merced:
WSC Category 3: Propogating Climate-Driven Changes in Hydrologic Processes and Ecosystem Functions across Extreme Biophysical and Anthropogenic Gradients

Georgescu, Matei, Arizona State University:
WSC-Category 3: Sustainable Large-Scale Deployment of Perennial Biomass Energy Crops

Foufoula-Georgiou, Efi, University of Minnesota-Twin Cities:
WSC-Category 2, Collaborative: Climate and Human Dynamics as Amplifiers of Natural Change: a Framework for Vulnerability Assessment and Mitigation Planning

Hornberger, George, Vanderbilt University:
Climate, Drought, and Agricultural Adaptations: An Investigation of Vulnerabilities and Responses to Water Stress Among Paddy Farmers in Sri Lanka

Maxwell, Reed, Colorado School of Mines:
WSC-Category 2, Collaborative: Water Quality and Supply Impacts from Climate-induced Insect Tree Mortality and Resource Management in the Rocky Mountain West

-NSF-

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov

Related Websites
NSF Awards First Grants for Study of Water Sustainability and Climate: http://www.nsf.gov/news/news_summ.jsp?cntn_id=117819
NSF Discovery Article: Cry Me a River: Following a Watershed's Winding Path to Sustainability: http://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=123431&org=NSF
NSF SEES Discovery Articles Publication: http://www.nsf.gov/pubs/2012/disco12001/disco12001.pdf
Science, Engineering and Education for Sustainability NSF-Wide Investment (SEES): http://www.nsf.gov/sees

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Aerial photo of the watershed of the Yakima River Basin in Washington State.
WSC scientists will study the watershed of the Yakima River Basin in Washington State.
Credit and Larger Version

LIDAR image of steep areas in orange along the Minnesota River.
LIDAR image of very steep areas (orange) along the Minnesota River: Hotspots of change.
Credit and Larger Version

Image of Friant Dam on the Lower San Joaquin River in California.
The Lower San Joaquin River in California is fed by water releases from Friant Dam.
Credit and Larger Version

Image of melting snow and conifers in the headwaters of the Rio Grande River in Colorado.
Headwaters of the Rio Grande River in Colorado; snowmelt is the river's main water source.
Credit and Larger Version

Image of WSC researchers talking about paddy irrigation with a farmer in Sri Lanka.
WSC researchers talk about paddy irrigation with a farmer in Sri Lanka.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page