text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 11-146
Animal Species Large and Small Follow Same Rule for How Common They Are in Ecosystems

Research leads to new "scaling" rule for abundance and production of animals

Photo of the Bahia Falsa, an estuary in Mexico.

Overview of Bahia Falsa in Mexico, one of the estuaries where scientists conducted the study.
Credit and Larger Version

July 21, 2011

Animal species all follow the same rule for how common they are in an ecosystem, scientists have discovered. And the rule is simple.

Everything from birds to fishes, crabs to snails to worms, and the parasitic animals that live inside or on them, follows it.

"You can predict how common something might be just by knowing its body weight--how big an individual is--and how high up the food chain it is," says biologist Ryan Hechinger of the University of California at Santa Barbara (UCSB), lead author of a paper in this week's issue of the journal Science.

The research was funded by the joint National Science Foundation (NSF)-National Institutes of Health (NIH) Ecology of Infectious Diseases (EID) program.

"This comprehensive study has revealed a very simple rule that underlies a complex system," says Sam Scheiner, EID program officer at NSF.

"Extracting such simplicity from complexity will allow scientists to better understand and manage all natural systems from forests, to lakes, to ocean fisheries," Scheiner says.

Body size is important because it's connected to how much food an animal needs--to how many calories it burns, says Hechinger.

Bigger animals burn more calories. Because each individual needs more food, there aren't as many big animals as small animals.

But the food chain is also important. The higher up the food chain, the less food there is and the less common an animal species is--whether it's big or small--a bird or a parasitic worm.

"Paying attention to parasites at the same time as other animals is key to the results," says Hechinger.

Parasites are at least half of all biodiversity, he says. But ecological science usually ignores parasites.

"If we want to understand how life works, how species make their living, how can we do that if we don't look at most species--the parasites?" asks Hechinger. "Including parasites in our study let us see the true patterns in nature."

Keeping parasites in mind, and the way they are different than predators, helped the scientists develop a theory that works for all types of life, parasites or not.

Parasites provide a great way to test and expand general ecological science, Hechinger and co-authors believe. Co-authors of the paper are Kevin Lafferty of UCSB and the U.S. Geological Survey Western Ecological Center; Andy Dobson of Princeton University; James Brown of the University of New Mexico; and Armand Kuris of UCSB.

All animal populations produce new biomass, says Hechinger. They add biomass as individuals grow and reproduce.

"We found that the amount of biomass produced by a population doesn't depend on the body size of a single animal in that population, and doesn't seem to depend on the type of animal," says Hechinger. But it does depend on how high up the food chain it is.

Birds or fishes, crabs or parasites can all make the same amount of biomass each year, he says.

If this rule is general, the scientists believe, it means that species such as deer and aphids, which both eat plants, can make the same biomass every year.

And mountain lions and the tape worms that both feed on deer can make the same biomass.

But that biomass production will be lower than the deer's, because the mountain lion and the tape worm are higher up the food chain.

-NSF-

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov

Related Websites
NSF Special Report: Ecology of Infectious Diseases: http://www.nsf.gov/news/special_reports/ecoinf/index.jsp
Ecology of Infectious Disease Grants Awarded by NSF, NIH: http://www.nsf.gov/news/news_summ.jsp?cntn_id=117857

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Photo of scientists quantifying the abundance and diversity of fishes at Carpinteria Salt Marsh.
Scientists quantify the abundance and diversity of fishes at Carpinteria Salt Marsh in California.
Credit and Larger Version

Image of a parasitic isopod, one of the larger parasites found in the estuaries in the project.
A parasitic isopod, one of the larger parasites found in the estuaries in the project.
Credit and Larger Version

Photo of a field research team sampling animals at a mudflat study site.
A field research team samples animals at a mudflat study site.
Credit and Larger Version

Figure showing how body size and the food chain influence abundance and production of animals.
Figure showing how body size and the food chain influence abundance and production of animals.
Credit and Larger Version

Image of the July 22 cover of the journal Science
The researchers' results are described in the July 22 issue of the journal Science.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page