text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 11-085
Threading the Climate Needle: The Agulhas Current System

Increased Agulhas "leakage" significant player in global climate variability

Map showing the Agulhas Current system and its leakage into the Atlantic Ocean.

Agulhas Current system and its "leakage" into the Atlantic Ocean, affecting climate.
Credit and Larger Version

April 27, 2011

View a video on the Agulhas Current.

The Agulhas Current which runs along the east coast of Africa may not be as well known as its counterpart in the Atlantic, the Gulf Stream. But now researchers are taking a closer look at this current and its "leakage" from the Indian Ocean into the Atlantic Ocean--and what that may mean for climate change

In results of a study published in this week's issue of the journal Nature, a team of scientists led by University of Miami Rosenstiel School of Marine & Atmospheric Science Oceanographer Lisa Beal, suggests that Agulhas leakage could be a significant player in global climate variability.

The Agulhas Current transports warm and salty waters from the tropical Indian Ocean to the southern tip of Africa. There most of the water loops around to remain in the Indian Ocean (the Agulhas Retroflection), while some water leaks into the fresher Atlantic Ocean via giant Agulhas rings.

Once in the Atlantic, the salty Agulhas leakage waters eventually flow into the Northern Hemisphere and act to strengthen the Atlantic overturning circulation by enhancing deep-water formation.

Atlantic overturning circulation is technically known as Atlantic meridional overturning circulation (AMOC); it carries warm shallow water into northern latitudes and returns cold deep water southward across the equator.

Recent research points to an increase in Agulhas leakage over the last few decades, caused primarily by human-induced climate change.

The finding is profound, oceanographers say, because it suggests that increased Agulhas leakage could trigger a strengthening in Atlantic overturning circulation--at a time when warming and accelerated meltwater input in the North Atlantic has been predicted to weaken it.

"This could mean that current IPCC model predictions for the next century are wrong, and there will be no cooling in the North Atlantic to partially offset the effects of global climate change over North America and Europe," said Beal.

"Instead, increasing Agulhas leakage could stabilize the oceanic heat transport carried by the Atlantic overturning circulation."

There are also paleoceanographic data to suggest that dramatic peaks in Agulhas leakage over the past 500,000 years may have triggered the end of glacial cycles.

These data are further evidence that the Agulhas system and its leakage play an important role in the planet's climate, Beal and others say.

"This study shows that local changes in atmospheric and oceanic conditions in the Southern Hemisphere can affect the strength of the ocean circulation in unexpected ways," said Eric Itsweire, director of the National Science Foundation (NSF)'s physical oceanography program, which funded the research.

"Under a warming climate," said Itsweire, "the Agulhas Current system near the tip of South Africa could bring more warm salty water from the Indian to the Atlantic Ocean and counteract opposing effects from the Arctic Ocean."

The study establishes the need for additional research in the region that focuses on Agulhas rings, as well as on the leakage, believes Beal.

Climate modeling experiments are critical, she said, and need to be supported by paleoceanographic data and sustained observations to firmly establish the role of the Agulhas system in a warming climate.

"Our goal now is to get more of the scientific community involved in research on the Agulhas system and its global effects," said Beal. "The emphasis has been too long in the North Atlantic."

The Agulhas Current Time-Series Experiment, or ACT, was launched in April 2010 to measure the variability of the Agulhas Current using a combination of current meter moorings and satellite data.

Beal, who serves as chief scientist, spent one month aboard the research vessel Knorr in the southwest Indian Ocean deploying oceanographic instruments.

The data gathered in situ, when combined with along-track satellite information, will help increase our understanding of how the Agulhas system is changing in a warming climate, Beal said.

The scientific team included Beal, Wilhelmus P.M. de Ruijter of Utrecht University in the Netherlands, Arne Biastoch of Leibniz- Institut für Meereswissenschaften (IFM-GEOMAR) in Germany, and Rainer Zahn of the Universitat Autònoma de Barcelona in Spain.

It also included members of the Scientific Committee for Oceanic Research (SCOR) Working Group 136 on the Climatic Importance of the Agulhas System, sponsored by SCOR, the International Association for the Physical Sciences of the Oceans, and the World Climate Research Program.

For information on the program, please visit the ACT website.

-NSF-

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov
Barbra Gonzalez, RSMAS, (305) 421-4704, barbgo@rsmas.miami.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Image of Lisa Beal, assoc. professor of meteorology and physical oceanography, University of Miami.
View Video
Oceanographers have discovered changes in one of Earth's major current systems, the Agulhas Current.
Credit and Larger Version

Photo of current meters secured to lab benches.
Current meters are secured to lab benches, ready for deployment into the Agulhas Current.
Credit and Larger Version

Photo of mooring operations on deck of the research vessel Knorr.
Mooring operations on deck of the Knorr during the Agulhas Current experiment.
Credit and Larger Version

Photo of a current meter and chain of floats deployed as part of several-kilometers-long mooring.
A current meter and chain of floats deployed as part of several-kilometers-long mooring.
Credit and Larger Version

Photo of oceanographer Lisa Beal showing schoolchildren a current meter.
Oceanographer Lisa Beal shows schoolchildren a current meter in the main science lab aboard ship.
Credit and Larger Version

Photo of the rendezvous of the Knorr and clipper Stad Amsterdam off the South African Cape.
Rendezvous between research vessel Knorr and clipper Stad Amsterdam.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page