text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 99-011
Molecular Control Mechanism of Embryonic Development Unraveled

February 18, 1999

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

National Science Foundation (NSF)-funded researchers at the Johns Hopkins School of Medicine in Baltimore, Maryland, and at California's Stanford University have shed new light on the molecular switches that control the complex process by which a single fertilized egg develops into a mature organism. Their paper is published in the February 19, 1999, issue of the journal Cell.

In humans and other mammals, the process is orchestrated in the developing embryo by a set of proteins called "Hox proteins" that control the timely expression of genes -- and thereby control the production of the "next stage" proteins needed for embryonic development. The action of Hox proteins must, in turn, be coordinated to assure the accurate development of an embryo; that coordination involves another set of proteins that act as molecular choreographers.

"Failure of the molecular systems that control development prevents normal embryonic growth, and alterations in these control systems can lead to a wide variety of cancers," explains Kamal Shukla, program director in NSF's division of cellular and molecular biosciences, which funds the research. "Understanding the molecular mechanisms that control normal embryonic development is the first step in developing strategies to prevent these errors, or to repair them when they have gone wrong." Cynthia Wolberger at Johns Hopkins and Michael Cleary at Stanford have made a major step forward in the understanding of these crucial molecular events, Shukla believes.

This research, which uses x-ray crystallography, has led to the determination of the atomic structure of "HoxB1" and a protein called Pbx1, all bound to a fragment of DNA. Pbx1 plays a central role in the modulation of Hox protein function, and mutations in it have been implicated in some childhood leukemias. By visualizing how Pbx1 interacts with a Hox protein and with DNA, Wolberger and colleagues have determined the precise way in which the proteins interact with one another to control development.

Pbx1, by interacting with Hox proteins, is able to control the expression of many different types of proteins, says Wolberger. "Understanding how they interact with partner proteins such as Pbx1 and with DNA is key to knowledge of the mechanism by which a developing organism grows from a single fertilized egg cell into a fully differentiated creature with head and tail, arms and legs."

-NSF-

Media Contacts
Cheryl L. Dybas, NSF, (703) 292-8070, cdybas@nsf.gov

Program Contacts
Kamal Shukla, NSF, (703) 292-7131, kshukla@nsf.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Email this pagePrint this page
Back to Top of page