text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 95-44
Geophysicists Explore Interior of Mars -- from Earth

June 29, 1995

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

Scientists believe that planet Mars, like the Earth, has a largely iron core. But without seismological evidence, the dimensions, composition, and physical state of the core of Mars have been difficult to assess. The presence in many meteorites of iron sulfide (FeS) suggests that sulfur is a possible component (along with iron) of the cores of Mars, and other planets.

Writing in the journal Science (30 June 1995), Yingwei Fei, Charles Prewitt, Ho-kwang Mao, and Constance Bertka of the Carnegie Institution of Washington, all working at the National Science Foundation (NSF)'s Center for High-Pressure Research, reported on their recent x-ray diffraction experiments.

In these experiments, they applied synchrotron x- radiation to FeS samples, employing newly developed capabilities for achieving simultaneous high pressure and high temperature in a diamond-anvil cell. Capabilities for "in situ" measurement were essential because high-pressure, high-temperature forms of FeS are "nonquenchable." (They change phase upon return to room conditions.) The new instrumentation is capable of achieving pressures in excess of conditions inside Mars' core.

In their experiments, Fei and colleagues discovered and characterized a previously unknown high-pressure/high temperature form of FeS, called FeS IV, which exists at the pressures and temperatures believed to prevail in the core of Mars. They also found an electronic transition in FeS IV at intermediate pressures, indicating metallization of FeS at higher pressures; pinned down boundaries of pressure and temperature dividing FeS IV from other FeS forms; and applied their data in a fresh evaluation of the depth of Mars' core mantle boundary. Their conclusion is that if FeS is a major component of the planet's core, it is in the FeS IV structure.

The discovery of the FeS IV form bears directly on calculations of the depth of Mars' core-mantle boundary. Such calculations depend on density profiles of the mantle and core. Previous calculations indicated a core-mantle boundary between 1370 and l990 kilometers in depth. The new calculations with FeS IV show that the core-mantle boundary of Mars is probably some 2,000 kilometers down.

The Center for High-Pressure Research is funded by NSF's division of earth sciences.

-NSF-

Media Contacts
Cheryl L. Dybas, NSF, (703) 292-8070, cdybas@nsf.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Email this pagePrint this page
Back to Top of page