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What is Quantitative Linear Algebra? 

 

The purpose of the program was to bring together topics from a number of important directions, 

including discrepancy theory, spectral graph theory, random matrices, geometric group theory, 

ergodic theory, von Neumann algebras, as well as specific research directions such as the 

Kadison-Singer problem, the Connes embedding conjecture and the Grothendieck inequality.   

 

A very important aspect of the program is its aim to deepen the links between research 

communities working on some infinite-dimensional analysis problems that occur in geometric 

group theory, ergodic theory, von Neumann algebras; and some quantitative finite-dimensional 

ones that occur in spectral graph theory, random matrices, combinatorial optimization, and the 

Kadison-Singer problem. 

 

The main events of the program were as follows: 

● Tutorial lectures 

● Workshop 1: Expected characteristic polynomials techniques and applications 

● Workshop 2: Approximation properties in operator algebras and ergodic theory 

● Workshop 3: Random matrices and free probability theory 

● Culminating workshop at Lake Arrowhead 

● Weekly seminars in between the workshops organized by the participants 
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Random Matrix Theory 

 

Let 𝐴 be a self-adjoint matrix of size 𝑁 × 𝑁.  This matrix can be fully described by giving the set 

of its eigenvalues 𝜆1, … , 𝜆𝑁  and of the associated eigenvectors.  Of these, the eigenvalues are 

similarity invariants of the matrix, and so sometimes one is interested in the eigenvalues of the 

matrix only. There are several ways to encode the eigenvalues of the matrix.  One is the so-called 

empirical distribution, which is the probability measure 
1

𝑁
∑𝑁

𝑖=1 𝛿𝜆𝑖
.  In turn, this probability 

measure can be encoded by its moments, which can be rewritten as traces of powers of the 

matrix: 𝑇𝑟(𝐴𝑝), 𝑝 = 1,2, ….  Alternatively, the measure can be encoded by its Stieltjes 

transform, i.e. the trace of the resolvent 𝑇𝑟[(𝐴 − 𝑧)−1], with 𝑧 lying in the upper half plane. 

Entries of the resolvent also provide information on the eigenvectors, in particular allowing one 

to distinguish whether they are localized (essentially supported on only a few coordinates) or 

delocalized. 

 

In many applications, the matrix 𝐴 is random; in this case the eigenvalues of the matrix are 

random as well.  Random matrix theory deals with questions of distribution of these 

eigenvalues, as well as asymptotic behavior of such eigenvalues.  For example, suppose that the 

matrix 𝐴 has random entries which are complex Gaussian random variables (maximally 

independent subject to the constraint that 𝐴 is self-adjoint) and each has variance 1/𝑁 (so each 

row or each column has variance 1).  In that case, a lot of detail is known about the behavior of 

eigenvalues and eigenvectors of the matrix 𝐴, mainly through the analysis of the average value 

and of fluctuations of its empirical distribution: 

 

● With high probability, the eigenvalues belong to the interval [−2,2] 

● The expected number of eigenvalues in the interval [𝑎, 𝑏] is given by the semicircle law, 

the ratio of the area under the semicircle of radius 2 above the interval to the area of the 

semicircle of that radius; 

● If 𝑓 is a function so that the expected value of 𝑓(𝜆𝑖) is 𝑖, then the spacings 𝑓(𝜆𝑖) −

𝑓(𝜆𝑖+1)  are distributed according to the “sine kernel” distribution 

● The maximal and minimal eigenvalues are distributed according to the Tracy-Widom 

distribution. 

● Regarding eigenvectors: the eigenbasis is distributed according to Haar measure on the 

unitary group. In particular, with high probability all of the eigenvectors are delocalized: 

their mass is spread more or less uniformly over all 𝑛coordinates. 

 

This so-called Gaussian Unitary Ensemble (GUE) model is perhaps the best-understood one of 

all.  Moreover, many of these results generalize to matrices with i.i.d. entries which are not 
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Gaussian but which have sufficiently many finite moments.  However, there are a number of 

questions that go beyond this paradigm, often motivated by various applications: 

 

a) Perhaps most notably, the above paradigm omits non-Hermitian random matrices, which 

present unique challenges for analysis. In particular, the spectrum of such matrices can be 

highly unstable under small perturbations, and the spectrum is not characterized by its 

moments. Nevertheless, non-Hermitian models have been an active area of interest in free 

probability, mathematical physics, and applications for modeling stability of dynamical 

systems (e.g. food webs, neural networks). The need to establish quantitative stability of 

the spectrum interfaces with the subject of geometric functional analysis.  

b) Quantitative theory: Estimates for the norm of a random matrix and the norm of its 

inverse are useful for problems in signal processing, in addition to the above-mentioned 

applications to spectral stability for non-Hermitian models. There is also interest in 

obtaining such estimates under additional structural assumptions on the matrix 

distribution.  

c) Adjacency matrices of random graphs: here spectral information about the matrix gives 

structural information about the graph, including questions such as its expansion 

properties. While Erdös–Rényi graphs with constant edge density fit easily into the iid 

paradigm, new approaches are needed to understand sparse graphs, or graphs whose 

adjacency matrices have dependent entries (e.g. d-regular graphs). One can also consider 

directed graphs, which yield non-Hermitian matrix models. There are also important 

questions concerning eigenvectors, such as the number of nodal domains, which have 

applications in computer science.  

d) Sparse random matrices: In many applications, an appropriate model would be that of 

matrices whose entries are mostly zero; there is also the closely related models of 

matrices with heavy-tailed entries.  Extending known techniques to the sparse case often 

requires near-optimal quantitative estimates. 

e) Combinations of several random and non-random matrices: e.g., 𝐴 = 𝑋 + 𝑌 where 𝑋  

is random (“noise”) and 𝑌 is deterministic (“signal”); here the question is deducing 

properties of 𝑌knowing spectral properties of 𝐴.   

f) Structured matrices, in which one assumes that certain entries have different variance 

profile, e.g. “band matrices” where the entries are random but the (𝑖, 𝑗)-th entry is zero if 

|𝑖 − 𝑗| > 𝜙(𝑁) for some function 𝜙. Work on such models is inspired by the Anderson 

localization phenomenon in mathematical physics. In particular, it is expected that for 

𝜙(𝑁) >> √𝑁 the eigenvalues and eigenvectors of such models behave as they do for 

GUE, whereas for 𝜙(𝑁) << √𝑁there is a transition to Poisson statistics for eigenvalues 

and delocalization of eigenvectors. This transition models the metal/insulator transition in 

disordered materials.  

g) Unitarily invariant ensembles, in which rather than assuming independence condition 

on entries, one assumes that the matrices are samples from a unitarily invariant 
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distribution of the form 𝑒𝑥𝑝(−𝛽𝑁𝑇𝑟(𝑉(𝐴)) for some function 𝑉 (note that quadratic 𝑉 

correspond to the GUE case). 

h) Large deviations: For the GUE one can use the explicit formula for the joint density of 

eigenvalues to establish a large deviations principle for the empirical spectral distribution 

– that is, fine estimates on the probability that the spectrum is significantly different from 

its “equilibrium” semicircular distribution – as was done by Ben Arous and Guionnet in 

the early 2000s. Accomplishing the same for matrices with non-Gaussian entries is a 

long-standing open problem. One can similarly ask for large deviation principles for the 

largest eigenvalues, which could be useful for community detection in random graphs, or 

for the rigorous study of complex energy landscapes (which arise in the theory of deep 

neural networks).  

i) Other statistics of the characteristic polynomial: Apart from its zeros, there is interest in 

other properties of the characteristic polynomials of random matrices, which fall into the 

paradigm of logarithmically correlated fields. Much interest is motivated by a well-

known analogy between the characteristic polynomial of a Haar unitary matrix and 

statistical behavior of the Riemann zeta function. This has provided a useful tool for 

heuristic understanding of conjectures in analytic number theory.  

 

These are just some of the motivating problems that were discussed at Workshop III devoted to 

random matrix techniques. There has been enormous progress on understanding some of these 

additional directions.   

 

Some relied on updates to the moment method in which careful analysis of moments of the 

matrix enables control of its eigenvalues.  A powerful variant of the moment method involves 

analysis of non-backtracking paths, interpreting the matrix as a random walk operator on a 

certain random graph and understanding the combinatorics of certain paths.  This method has 

been useful for the study of the spectral gap and community detection for sparse random graphs. 

In particular, Florent Benaych-Georges talked about recent advances on the large eigenvalues of 

sparse random graphs using this method.  

 

Others involve the use of super-fast relaxation to GUE statistics, a method pioneered by H.T. 

Yau, L. Erdös and collaborators, in which it is proved that a small GUE perturbation of many 

matrices immediately has GUE statistics, an observation that can be used to relate statistics of 

GUE matrices and of many other random matrices.  At the workshop, Yau and his students J. 

Huang and B. Landon reported on recent upgrades to the relaxation method that yield fine 

information on the eigenvectors and spectrum for random band matrices and sparse random 

graphs. Regarding the universality theory for sparse random graphs, there were also talks of 

Bauerschmidt and Dumitriu on local laws for bounded-degree regular graphs and stochastic 

block models, respectively.  
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Progress on the universality theory of non-Hermitian random matrices has surged over the last 

decade, since work of Tao–Vu, Götze and A. Tikhomirov and others on the circular law 

describing the limiting spectral distribution at global scale. In particular, there has been progress 

extending the circular law class to include sparse directed graph ensembles by workshop 

participants Rudelson, Basak, Zeitouni, Cook, Tikhomirov and coauthors. At the workshop, 

Mark Rudelson and Konstantin Tikhomirov reported on recent progress with Anirban Basak 

extending the circular law to very sparse random matrices, which required new quantitative 

methods from geometric functional analysis. In a completely different direction, Ofer Zeitouni 

discussed banded non-Hermitian random matrices with bounded band width, which can display a 

variety of singular phenomena not seen in the circular law paradigm. His results with Basak and 

Paquette provoked a wide range of questions and provide fertile ground for future research. 

 

There was a lot of interest among workshop participants in the properties of eigenvectors. Marc 

Potters discussed their importance in the analysis of data matrices, where tools from free 

probability have proved useful. At the end of the workshop, Mark Rudelson and Han Huang 

announced new results on the number of nodal domains for eigenvectors in Erdös–Rényi 

graphs. Their work benefited from the interaction between experts on universality theory and 

geometric functional analysis methods. 

 

The theory of the supremum of log-correlated Gaussian fields was extended to include the 

logarithm of characteristic polynomials of random matrices, allowing to prove their convergence 

and fluctuations. In particular, precise results on the value of the supremum for the CUE field 

were obtained in the past couple of years, which led to some analogous results for the Riemann 

zeta function. Participants Cook and Zeitouni showed that some of the same behavior extends to 

characteristic polynomial of a random permutation matrix. This sparked some discussion of to 

what extent we should expect universality to hold for the behavior of the maximum of 

characteristic polynomials for various ensembles. The theory of traffics was adapted to show 

convergence of conditional expectations of powers of certain random matrices onto algebras of 

diagonal matrices. 

 

It is expected that in the large deviations regime for various random matrix statistics we should 

see a variety of non-universal behaviors. Following work of Bordenave and Chafaï, Fanny 

Augeri has established large deviations principles for matrices whose entries have stretched 

exponential tails, which proved to have very different behavior from the GUE.  

 

The Method of Characteristic Polynomials. 

 

In their breakthrough work, Marcus, Spielman and Srivastava have replaced the empirical 

spectral distribution by another observable, the characteristic polynomial.  Rather than looking at 

the questions of the average distribution of empirical measures, they were able to use interlacing 
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polynomial techniques to control the expected characteristic polynomials of certain random 

matrices. 

 

These polynomials are of interest from several different points of view, which were explored in 

the first workshop. 

 

(a) The expected polynomials of certain random graph models correspond to well-studied 

objects in statistical physics, most notably the monomer-dimer partition function 

(matching polynomial). A few years ago this connection was used to prove the 

following conjecture of Bilu and Linial: every bipartite regular graph admits a 2-cover 

whose new Laplacian eigenvalues are bounded by the spectral radius of its universal 

cover, which immediately implies the existence of infinite families of bipartite 

Ramanujan graphs. Doron Puder presented his recent work with Hall and Sawin which 

shows using representation theory that the same kind of result is true in much greater 

generality, in particular that every graph has a 𝑘-cover with the same property, for every 

integer 𝑘 greater than 1. 

(b) An alternate approach to constructing Ramanujan graphs is to directly study the expected 

characteristic polynomials of random graphs, rather than going via their covers. In this 

case, it turns out that the relevant polynomials come equipped with a natural notion of 

convolution that mimics the operation of free convolution in free probability theory, 

which takes place in the infinite-dimensional setting. Several talks in the workshop 

explored this finite-infinite connection; in particular Vadim Gorin explained how the 

zeros of expected characteristic polynomials may be viewed as a 𝛽 → ∞ limit of certain 

Coulomb gas models, and Octavio Arizmendi discussed how taking appropriate 𝑛 → ∞ 

limits of the polynomial convolutions yields the usual free convolution, showing that it is 

in some sense a discretization of (a part of) the infinite theory. The extent of the analogy 

between the finite and infinite convolutions is still not understood and remains a topic of 

investigation. 

(c) In addition to combinatorics, expected characteristic polynomials can be used to study 

several random matrices arising in functional analysis problems.  For instance, Pierre 

Youssef explained how such methods give improved bounds in Bourgain and Tzafriri’s 

restricted invertibility theorem, which is a quantitative version of the fact that the number 

of linearly independent columns of a matrix is equal to its rank, and Mohan Ravichandran 

used interlacing polynomials to give a quantitatively sharp solution of the paving 

problem, which is a simple matrix analytic statement known to be equivalent to the 

Kadison-Singer problem. 

(d) Dyson and Montgomery famously noticed in the 70’s that the zeros of the Riemann zeta 

function look statistically similar to the eigenvalues of certain random matrices. 

Workshop one included two lectures following this theme, in particular connecting 

expected characteristic polynomials to analytic number theory. Alex Gamburd explained 
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how the expected characteristic polynomials of random unitary matrices are relevant to 

computing these statistics, and presented results giving combinatorial interpretations of 

some of them. Terry Tao presented his recent proof with Rodgers of Newman’s 

conjecture, which states that the zeros of the zeta function are “barely on the critical 

line”, in that evolving (an appropriate renormalization of) the function by a reverse heat 

flow would immediately produce zeros that are not on the line. The connection is that the 

flow on the zeros is precisely the same as what one gets when computing the expected 

characteristic polynomial of a random Gaussian perturbation of a fixed matrix. 

(e) Many of the tools used to analyze expected characteristic polynomials come from the 

theory of stable polynomials, which are a multivariate generalization of real-rooted 

polynomials. It turns out that several interesting counting problems, for instance 

computing the permanent of a matrix, can be reduced to understanding how the 

coefficients of stable polynomials behave under certain linear transformations. The 

workshop concluded with several talks exploring the interface between this theory and 

algorithmic problems in computer science; for instance, Barvinok and Saberi talked about 

computing the permanent of certain restricted classes of matrices, and Anari announced 

an exciting new result on approximately counting the number of bases of any matroid, 

building on work of Huh, Adiprasito, and Katz. These techniques are different from those 

used in analyzing expected characteristic polynomials, but share some common 

phenomenology. 

 

Finite-dimensional Approximation of Infinite-dimensional Systems 

 

A tracial von Neumann algebra is an infinite-dimensional generalization of the matrix algebras 

𝑀𝑁(𝐶) with the normalized trace (1/𝑁)𝑇𝑟.  More precisely, it is an algebra 𝑀 of operators on a 

Hilbert space, closed under adjoints and weak limits, equipped with the operator norm and with a 

linear functional 𝜏: 𝑀 → 𝐶called the trace satisfying 𝜏(𝑎𝑏) = 𝜏(𝑏𝑎), 𝜏(𝐼) = 1, and 𝜏(𝑎∗𝑎)  ≥  0. 

 

Tracial von Neumann algebras often arise as large-𝑁limits of random matrix models, while other 

examples come from discrete groups.  For a group 𝐺, one defines the group algebra as the vector 

space with basis 𝐺 and multiplication which linearly extends the group multiplication.  The 

linear map given by 𝜏(𝑔)  = 𝛿𝑔=𝑒 defines a trace on the completion of this algebra. 

 

Free probability studies how well finite-dimensional matrix models can be approximated by the 

infinite-dimensional theory of tracial von Neumann algebras.  In the opposite direction, the 

Connes embedding question asks whether every tracial von Neumann algebra can be simulated 

by finite matrices in following sense.  Given an abstract tracial von Neumann algebra (𝑀, 𝜏) and 

self-adjoint elements 𝑎1, … , 𝑎𝑘, is it true that for any 𝜖 > 0 and any 𝑑, that there exist some self-

adjoint matrices 𝐴1, … , 𝐴𝑘of some size 𝑁 × 𝑁  with the property that |(1/𝑁)𝑇𝑟(𝑝(𝐴1, … , 𝐴𝑘)) −

𝜏(𝑝(𝑎1, … , 𝑎𝑘))| < 𝜖 for any monomial 𝑝 of degree at most 𝑑. 
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This question is open even for elements of group algebras.  Moreover, in the group context, one 

can ask the related question whether every group can be simulated by finite permutation matrices 

(rather than simply unitary matrices as in Connes embedding).  More precisely, let 𝐺 be a 

discrete group generated by 𝑔1, … , 𝑔𝑘, 𝑔1
−1, … , 𝑔𝑘

−1 .   We say that 𝐺is sofic if for every 𝜖 > 0 

and 𝑑 > 0, there exist permutation matrices 𝐺1, … , 𝐺𝑘 of some size 𝑁 × 𝑁 with the property that 

for any monomial 𝑝 of degree at most 𝑑,(1/𝑁)#{𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑝(𝐺1, … , 𝐺𝑘, 𝐺1
−1, … , 𝐺𝑘

−1)} 

is within 𝜖 of 0 or 1 depending on whether 𝑝(𝑔1, … , 𝑔𝑘, 𝑔1
−1, … , 𝑔𝑘

−1)  is trivial or not in 𝐺. 

 

It is not hard to see that If 𝐺is amenable, residually finite, or more generally residually amenable, 

then 𝐺is sofic, and consequently the Connes embedding question has a positive answer for the 

group algebra of 𝐺.  However, it is unknown whether all groups are sofic (this is called the sofic 

group question), and there are even some concrete groups whose soficity is unknown. 

 

There are quantitative versions of the Connes embedding and sofic group questions.  For a tracial 

von Neumann algebra 𝑀generated by 𝑋1, . . . , 𝑋𝑛, Voiculescu’s free entropy measures the amount 

of matrix approximations to 𝑋1, . . . , 𝑋𝑛, and is closely related to large deviations in random 

matrix theory. 

 

A similar idea lies behind Bowen's notion of sofic entropy for probability-preserving actions of a 

sofic group G.  To define this, one fixes a tuple of permutations of a finite set {1,2,...,N} which 

approximate the relations of the group, and then counts the number of colorings of the set 

{1,2,...,N} which approximate the given action in combination with those fixed permutations. 

Sofic entropy provides an entropy-like invariant for actions of many non-amenable groups, 

including free groups.  It promises a vast generalization of several older directions of research in 

ergodic theory, and has uncovered novel phenomena that cannot arise in the classical setting of 

amenable-group actions.  Some of these were discussed at workshop II.  For instance, the sets of 

finitary colorings which approximate a given action also admit natural measures of 

‘connectedness’, which may be non-trivial for actions of non-amenable groups.  One highly 

‘disconnected’ example has recently been shown by Bowen to violate the ‘weak Pinsker 

property’, one of the main structures present in all actions of amenable groups. 

 

Among other examples, S. Popa spoke on a cohomological interpretation of a number of 

questions -- including the Connes embedding question -- in terms of a certain non-abelian 

cohomology associated to groups.  Thanks to his work, there emerged a very interesting class of 

groups with vanishing cohomology (a class that includes free groups, but which may be as large 

as groups measurably equivalent to free groups).   

 

A reformulation of the Connes embedding question is the question of embeddability of an 

arbitrary abstract von Neumann algebra into an ultraproduct of matrix algebras.  Such 
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considerations turn out to be connected to model theory in mathematical logic, and there were 

several talks elucidating this connection. 

 

The Connes embedding question made a remarkable appearance recently in quantum information 

theory, where it was related to approximation of sets of quantum correlations (abstract quantum 

systems vs. finite-dimensional quantum systems).  A talk by Thomas Vidick and subsequent 

discussion with W. Slofstra were very inspirational, and have led M. Musat and M. Rørdam to 

the solution in the negative of the question if factorizable quantum channels (completely positive 

maps) can always be represented in finite dimensions. 

 

Other Approximation Properties in Ergodic Theory and von Neumann Algebras 

 

These “modeling” questions are in turn related to others that concern purely infinite-dimensional 

objects: Banach spaces, von Neumann algebras, etc.  

 

This field of von Neumann algebras has seen a number of dramatic recent advances thanks in 

many ways to connections with free probability, geometric group theory, and the emergence of 

Popa’s deformation-rigidity theory.   

 

A number of results on classification of von Neumann algebras have their roots in finite-

dimensional questions concerning approximation properties of these algebras. One such (anti-) 

approximation property is Kazhdan’s property (T).  A remarkable result of Ozawa et al states 

that the group of automorphisms of the free group on 5 generators has this property, a proof that 

(through very clever analysis) can tested on a computer by finding a sufficient condition that 

amounts to solving a certain finite-dimensional optimization problem. Such computer-assisted 

proofs have led to a number of dramatic improvements in the known Kazhdan constants for 

certain groups. In combination with work of Lubotzky and Pak, property (T) for the 

automorphism group of the free group on 𝑘 generators shows that the 𝑘-generator replacement 

graphs on arbitrary groups are expanders. This leads to the product replacement algorithm to 

generate uniformly distributed random elements in a given finite group. A new result by I. Pak 

proved during the program shows that the result of Ozawa et al for the automorphism group of 5-

generator free group is sufficient to yield the expander property for 𝑘-generator replacement 

graphs for any fixed 𝑘 ≥ 5. 

 

Kazhdan's property (T) and, more generally, spectral gap properties play a key role in Popa's 

deformation/rigidity theory. The basic and wide open question here is to which extent groups, 

equivalence relations or other discrete structures can be recovered from their ambient and highly 

malleable von Neumann algebra. Several talks focused on aspects of this question and its 

connections to lattices in Lie groups, L2-invariants, measurable group theory and specific 

families of groups given by free product type constructions. 
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A famous application of random matrix techniques is the Johnson–Lindenstrauss lemma, which 

states that it is possible to project a high-dimensional space into low-dimensional space with 

bounded distortion.  This results in dimension reduction, and is very desirable in applications.  

On the other side, there were talks by A. Naor and G. Schechtman about situations where such 

reduction is not possible. 

 

Vaughan Jones gave the Green Family Lecture Series.  His research talk (part of the second 

workshop) concentrated on a tantalizing way to discretize symmetries involved in conformal 

field symmetry using the Thompson group. Motivated by this, he discussed a new and 

remarkable family of representations of this group. 

 

Activities between Workshops. 

 

During the weeks with no workshops scheduled, the participants organized several seminar 

series and a series of open problem discussions.  A weekly seminar series focused on random 

matrices and their application.  In addition, there was a general seminar series which included a 

number of talks by junior participants, often multiple talks in the same week.  These talks 

covered a broad range of topics such as operator algebras and free probability. A third seminar 

series focused on expected characteristic polynomials, and explored two main themes (1) 

connections between expected characteristic polynomials of sums of unitarily invariant matrices 

and free probability (2) the limiting behavior of the roots of expected characteristic polynomials 

and their relation to equilibrium measures in potential theory. Interest in (2) was triggered during 

the semester by conversations between participants from different communities e.g. Potters, 

Marcus, Srivastava, Grebinski, Jekel.  

 

The open problem session has produced a number of highly stimulating questions.  For example, 

one of the questions dealt with quantifying impossibility of satisfying the Heisenberg 

commutation relation [𝑥, 𝑦] = 𝑖𝐼 by bounded operators 𝑥, 𝑦.  An old result of Popa shows that if 

||[𝑥, 𝑦] − 𝐼|| < 𝜖, then ||𝑥|| ⋅ ||𝑦|| ≥
1

2
𝑙𝑜𝑔

1

𝜖
.  A recent result of Tao improves the Brown-Pearcy 

lower estimate, showing that there are examples of 𝑥, 𝑦 with ||[𝑥, 𝑦] − 𝐼|| < 𝜖 but ||𝑥|| ⋅ ||𝑦|| =

𝑂(𝑙𝑜𝑔16 (
1

𝜖
)). 

 

Impact of the Program, Future Research Directions, and Connections. 

 

A number of junior participants mentioned that the program gave them ample opportunities to 

discuss their research with senior mathematicians, especially during the less busy weeks when 

there were no workshops.  The tutorials week was an excellent preparation for the various topics 

discussed during the program, and the program itself was very useful in communicating the 

broad perspectives of research touched upon during the program. We also expect that the high 
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quality videos produced during the tutorials week will be a valuable resource for researchers 

wanting to enter these fields in the future. 

 

There have been several suggestions for possible follow-up topics.  One involved applications of 

random matrix theory and spectral graph theory, including further discussion of applications to 

computer science, as well as applications to disciplines such as mathematical finance and 

experimental disciplines, such as computational biology, neurobiology, population statistics, 

physics, etc.  One of the challenges here is to formulate better models for the noise that is 

inherent in such data, and to use random matrix theory and free probability theory to find ways to 

denoise the data.  This interesting topic would seem to be worthy of a separate IPAM 

workshop (that could be titled “Beyond the Marchenko-Pastur Law”). 

 

One of the very exciting developments during the program is a new book by M. Potters, titled 

“A First Course in Random Matrix Theory”.  This book is aimed at a broad audience of 

physicists, engineers and computer sciences, has been influenced by many of the talks and 

discussions during the program. 

 

Several of the open questions explored during the program have arisen from a synthesis of the 

various research directions presented in the different workshops. T. Austin spoke in the second 

workshop on his recent work establishing the weak Pinsker property for amenable groups: every 

measure-preserving action of any amenable group can be split as a direct product of a Bernoulli 

system and a system of arbitrarily small entropy. On other hand, L. Bowen explained a 

construction showing that the weak Pinsker property fails for non-abelian free groups. This leads 

to the intriguing question as to whether having the weak Pinsker property characterizes 

amenability. 

 

A recent result of M. Musat and M. Rørdam giving the solution in the negative of the question if 

factorizable quantum channels (completely positive maps) can always be represented in finite 

dimensions was a natural outgrowth of discussions with W. Slofstra on quantum information 

theory.   

 

A recent result by I. Pak, in combination with the result of Ozawa et al on property (T) for the 

automorphism of the free group on 5 generators showed that the product replacement graphs on 

arbitrary 𝑘-generator groups, 𝑘 ≥ 5, are expanders, explaining the efficiency of the product 

replacement algorithm. 

 

An open question of Ben Hayes connects random matrix theory with with tensor norms in 

operator algebras.  It concerns the limiting behavior of the random matrix model (𝐴𝑖 , 𝐵𝑖 : 𝑖 =

1, … , 𝑘) where 𝐴𝑖, 𝐵𝑖  are iid unitary random matrices, but 𝐴𝑖 act on matrices by left 

multiplication while 𝐵𝑖act by right multiplication.  The question is whether, for any polynomial 𝑝  
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in 2𝑘 variables (where the first 𝑘 and the last 𝑘 variables commute), one has that almost surely 

||𝑝(𝐴1, … , 𝐴𝑘 , 𝐵1, … , 𝐵𝑘)|| → ||𝑝(𝑢1 ⊗ 1, … , 𝑢𝑘 ⊗ 1,1 ⊗ 𝑢1, … ,1 ⊗ 𝑢𝑘|| where 𝑢𝑗  are free 

generators of the reduced C*-algebra of the free group and the norm on the right-hand side is the 

reduced C*-tensor norm.  If there are no matrices 𝐵, this reduces to a well-known result of 

Haagerup and Thorbjørnsen.  Solving this question would have immediate implications for von 

Neumann algebra theory. 

 

Discussions during the workshop ignited research collaborations between many participants, for 

example Marcus, Anari, and Oveis Gharan and Srivastava and Meka, on outstanding problems 

concerning expected characteristic polynomials including: finding 𝑙1 analogues of the proof of 

Weaver’s conjecture (which is equivalent to the Kadison-Singer problem), which would have 

major graph theoretic implications; finding a polynomial time algorithm to produce the matrix 

pavings guaranteed by the currently nonconstructive theorem of Marcus, Spielman, and 

Srivastava. Between workshops there was an ongoing conversation including participants 

Potters, Srivastava, Shlyakhtenko, and several graduate students, aimed at understanding whether 

results in Coulomb gas theory could be used to explain in a precise way why the method of 

interlacing polynomials seems to always produce results that are sharp. 


