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Introduction 
 
Turbulence is perhaps the primary paradigm of complex nonlinear multi-scale dynamics. It is 
ubiquitous in fluid flows and plays a major role in problems ranging from the determination of 
drag coefficients and heat and mass transfer rates in engineering applications, to important 
dynamical processes in environmental science, ocean and atmosphere dynamics, geophysics, 
and astrophysics. Understanding turbulent mixing and transport of heat, mass, and momentum 
remains an important open challenge for 21st century physics and mathematics. 
 
Advances in computation and experimentation over the past two decades have yielded 
increasingly detailed “full field” realizations of turbulent flows, and these have been 
successfully exploited to advance both theoretical and applied aims.  From the ever-increasing 
unwieldiness of these data sets alone, it is clear that future progress on the turbulence problem 
will increasingly depend upon on the quality of guidance provided by the underlying theoretical 
foundations, as well as the continued development of mathematical frameworks for analysis, 
prediction, optimization, and control.   With these broad aims in mind, the Institute for Pure and 
Applied Mathematics hosted a Long Program on the Mathematics of Turbulence from 
September 8, 2014 through December 12, 2014.  In addition to a series of tutorials presented 
during the first week, this long program hosted four workshops: 1) Mathematical Analysis of 
Turbulence, 2) Turbulent Transport and Mixing, 3) Geophysical and Astrophysical Turbulence, 
and 4) Turbulence in Engineering Applications.   
 
Although each of the workshops focused on topics specific to their respective areas, as the 
workshop progressed a number of emergent, recurring, and cross-cutting themes became 
apparent.  These largely pertain to the increasing toolbox of mathematical methods and 
theoretical concepts that are being leveraged to advance both fundamental and applied research 
on the mathematical properties of turbulence, as well as the prediction and control of this 
complex physical phenomenon.  Primary among these topics are those associated with the 
fundamental nature of the Navier-Stokes and Euler equations and their solutions in the turbulent 
regime, adaptations of the mathematics of control and optimization theory for prediction and 
data assimilation, the development of rigorous bounds for transport properties in scalar mixing 
and momentum transport, and a variety of methods used in the development of reduced order 
models that are gaining an increasingly well-founded basis in the underlying partial differential 
equations.  The following sections of this summary provide brief descriptions of the research 
directions currently being actively pursued within this broadly based research community, along 
with commentary pertaining to their future potential to advance mathematical approaches to the 
problem of fluid turbulence.       
 
 
Analysis of Navier-Stokes and Euler Equation Solutions  
 
There have been significant advancements in our understanding of properties of solutions to the 
Euler and Navier-Stokes equations in the last decade, but key questions remain open. The theory 
of wild solutions for the Euler equations has provided a new tool to attack Onsager’s conjecture. 
The issue remaining to be settled is whether energy dissipation can be used as a selection 
principle for physically meaningful solutions of the inviscid fluid equations, and in particular 
whether solutions arising as a limit of solutions to the Navier-Stokes equations in the vanishing 
viscosity limit can dissipate energy and hence represent turbulent flows. In the context of 2D 
turbulence it is known that enstrophy-bounded solutions of the Euler equations cannot dissipate 
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enstrophy. However, uniqueness of such solutions is wide open, as is uniqueness of solutions 
with initial vorticities that are only measures, such as point vortices and vortex rings. 
 
An exciting new direction of investigation is the use of stochastic analysis to study deterministic 
fluid models. Properties conserved by regular inviscid flows, such as circulation, can be 
conserved in an averaged sense in the presence of dissipation provided past trajectories are 
properly endowed with a probability measure. Such an approach can be useful in studying the 
behavior of flows at very high Reynolds numbers away from boundaries. It remains to be seen 
whether these ideas can be successfully applied to study the limit of vanishing viscosity in the 
presence of walls. 
 
When noise is added to flow trajectories, it is possible that in the limit of zero noise the resulting 
system retains randomness, exhibiting spontaneous stochasticity as in the Kraichnan model. 
Spontaneous stochasticity has also been shown to occur for Burger’s equation. Randomness 
leads to irregular transport properties, a possible mechanism for anomalous dissipation. At the 
same time stochasticity can enforce uniqueness of fluid trajectories, at least in the probabilistic 
sense, which can be used to estimate the size of attractors. 
 
There is also interest in adding noise to the fluid equations (which then become stochastic 
PDEs), e.g., to represent the unavoidable "molecular noise" remaining in the hydrodynamic limit 
of the microscopic molecular dynamics. An important question here is whether the effects of the 
noise persist in the high Reynolds-number turbulence limit.  If so, the non-uniqueness of weak 
solutions to the Cauchy problem for Euler would have a physical meaning as intrinsic 
unpredictability of turbulent flows. 
 
Methods for Control and Data Assimilation 
 
There are many situations in engineering where it is desired for a flow to be controlled to 
achieve some specific objective, where this control is achieved by means of a combination of 
sensing–––measuring the flow–––and actuation––suitably perturbing the flow to achieve a 
certain goal. There are also many situations where data is collected measuring a flow of interest–
––the classic example being the atmosphere–––where this data is “assimilated” into a model of 
the flow to produce a prediction or forecast–––e.g., will it rain tomorrow? It is becoming 
increasingly clear that these two important classes of problem are deeply related both in their 
fundamental character and the diverse mathematical tools that are relevant to their solution.  
 
In both situations the “data” are inevitably sparse and inherently uncertain. The appropriate 
management of this uncertainty is attracting much attention in terms of techniques including 
Bayesian statistics and stochastic calculus. Furthermore, both situations are inherently time-
limited and the models used to produce the forecasts or to predict the (hopefully desired) effects 
of actuators are often substantially reduced and simplified compared to the “real” underlying 
system. Capturing the key characteristics of the real system in a robust and efficient manner is 
obviously an enormously interesting and challenging problem. Various workshops and attendant 
discussions demonstrated that a key open question is to what extent the enormously powerful 
tools of “linear” analysis in all its forms can be deployed on under-constrained, uncertain, but 
undoubtedly nonlinear real-world systems. 
 
Turbulent Transport: Analysis & Bounds, and Computation, Optimization & Control 
 
Transport and mixing are elemental properties of turbulent flows and their quantitative 
characterizations present ongoing challenges of significant importance both for basic physics 
and for myriad applications in the applied sciences and engineering. The derivation of reliable 
predictions and rigorous limits on these processes from the fundamental equations of motion is 



an established and lively area of mathematical research that has enjoyed substantial success in 
recent decades.  New approaches involving novel applications of optimization and control 
technologies have recently emerged that are leading the field into new and promising directions. 
 
Control has long been utilized in engineering fluid dynamics to do what its name suggests; to 
manipulate flows to achieve desired goals.  Recently, however, the theoretical technology has 
also found novel application in exploring the ultimate limits on certain aspects of the dynamics. 
For example, optimal control theory and related optimization methods are now used to study 
extreme behaviour, and, in particular, regarding transport and mixing features and sensitivity to 
instabilities, producing new physical and mathematical insights into complex flow 
characteristics. These ideas are central to modern turbulence research in a variety of ways 
ranging from research into the transition from laminar to turbulent flow, to producing informed 
conjectures on the ultimate transport properties of fully developed turbulent flows. 

Turbulence in Engineering Applications 
 
One of the distinguishing features of turbulence is the presence of a broad range of scales in 
space and time yielding a characteristically complex fluid motion. Despite this complexity, 
however, there is recent recognition and consensus that the bulk of the transport of momentum 
and energy rests in–––and can be faithfully described by–––a limited number of coherent 
structures, a finding that is confirmed by both numerical simulations and experiments. Equally 
acknowledged is the fact that the modelled flow (based on these structures) has to be sustained 
by a feedback mechanism accounting for the neglected or truncated dynamics.  
 
A variety of promising approaches now incorporate a closed-loop, reduced-order, linear model 
based on a few coherent structures and a deterministic or stochastic feedback unit. Beyond their 
common overall layout the models distinguished themselves by the type of structures used in the 
linear model and by the type of feedback.  Models for wall-bounded shear flows in generic 
geometries, e.g., use frequency-response modes from an input-output formulation of the 
governing equations linearized about a turbulent mean flow, and selected nonlinear terms 
provide feedback and re-initialization of these structures. Similarly, asymptotic solutions based 
on a hierarchical perturbation approach also attempt to extract a low-dimensional model from 
the full governing equations with closure accomplished by selected nonlinearities 
 
Alternative to nonlinearities, the feedback loop can also be modelled by a stochastic process. In 
this case, an evolution equation for a second-order statistic (variance) is used to determine the 
driving term of a perturbation equation that in turn couples, via the mean flow, to the equation 
for the variance, thus yielding a fully coupled system of equations.  
 
A dynamical-systems approach has also emerged that focuses on fixed points and edge states as 
critical entities that govern the dynamics of phase-space trajectories. This type of analysis and 
optimal-path calculations by variational principles have made important contributions to our 
understanding of turbulence, in particular the transition from laminar to turbulent fluid motion 
 
A promising direction has become apparent at the workshop: the design of lean models that act 
as minimal representations of turbulent fluid motion. They rely on the concept of dynamic 
sparsity where only a few structures are responsible for the bulk of the momentum and energy 
transport. These models contain linearized governing equations and a nonlinear or stochastic 
feedback loop to sustain the dynamic process and capture the principal features of turbulence. 
These self-sustaining closed-loop systems, together with advanced phase-space techniques, are 
expected to give new insight into the physical mechanisms of turbulent and transitional fluid 
motion and to provide the foundation for reduced-order modelling to guide numerical and 
experimental investigations into more complex turbulent flows. 


