
Any opinions, findings, and conclusions or recommendations expressed in this material 
are those of the author(s) and do not necessarily reflect the views of the National 

Science Foundation. 
 

Unpacking the Phenotype (UP) 
Deciphering Genome to Phenome Relationships: 

Interdisciplinary Research at the Interface of the Biological and Mathematical 
Sciences 

 
Report of a NSF-funded Workshop held in Arlington Virginia 

on October 25-27, 2015 
 
 
Summary   
Biological systems are exceptionally complex, involving a multitude of interactions 
among a large number of components at different spatial and temporal 
scales.   What these biological processes are, and how they operate to produce 
particular traits and properties has been a subject of intense interest among 
biologists. The past few decades have witnessed a revolution in our ability to 
sequence genomes, clone genes, identify gene products, manipulate gene expression 
and genetically engineer a variety of cells and model organisms. These powerful 
technologies have been used in almost every field of Biology, from Molecular 
Genetics to Cell and Developmental Biology and from Physiology to Behavior and 
Ecology.   
 
The revolution in ‘omics studies continues to create vast amounts of data on gene 
expression, and protein and metabolite profiles, in many species of animals and 
plants, and under a variety of experimental conditions.  Although powerful 
techniques have been developed for deducing association networks among genes 
and a variety of traits, there has been little progress in understanding the causal 
relationship between genes and phenotypes. Understanding the causal processes 
that link genes and traits, and genomes and phenomes, is one of the Grand 
Challenges facing us today.  
 
The processes that generate phenotypes are complex, nonlinear, multivariate and 
multi-level.  And although these processes involve gene products, their kinetics and 
outcomes are determined by the system in which they operate.  These processes 
lead to a number of virtually universal emergent properties of phenotypes: 
phenotypic robustness (insensitivity of phenotype to genetic and environmental 
variation); phenotypic plasticity (a single genotype can lead to different phenotypes 
in different environments); variable penetrance (a mutation alters a phenotype in 
some individuals but not in others) and variable expressivity (a mutation leads to 
different phenotypes in different individuals).  These properties degrade a clean and 
simple relationships between genotype and phenotype.  
 
Because of their extreme complexity and diversity, the interactions by which genes 
affect the development, properties and functions of complex traits cannot be fully 
understood without quantitative analyses and mathematical models. This 
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understanding will require the development of foundational mathematical, 
statistical, and computational approaches and the development of new 
mathematical tools.  In particular, it will require a close collaboration of biological 
and mathematical scientists and leverage their complementary expertise to address 
these important challenges.   
 
Introduction 
Investigating and understanding emergent properties of biological systems are key 
to addressing one of the important grand challenges in biology, Deciphering the 
Genomes-to-Phenomes (G2P) Relationship. Examples of emergent properties include 
such diverse phenomena as protein folding, cell division, a stable body temperature, 
and Monarch butterfly migration.  Each of these emergent properties displays 
stability of form within one species that is resistant to both genetic and 
environmental variation. Yet the developmental processes that produce this 
stability are also capable of giving rise to the vast diversity of forms across species: 
organisms exist as stable entities, as well as dynamic ones capable of responding to 
genetic and environmental change.   
 
These biological properties are emergent in the sense that they are not encoded in 
the genome but arise from a multivariate non-linear interactions among many 
components at different spatial scales (molecules, cells, tissues, organs, organ 
systems, whole organisms) and temporal scales (from molecular interactions that 
occur in fractions of a second, to developmental and physiological time scales 
measured in hours to months). 
 
Understanding what these processes are, how they are affected by genes and 
environment, and how their interactions give rise to emergent properties of 
biological systems is an exceptionally challenging enterprise that is difficult if not 
impossible to do by experimentation alone.  Experiments are always based on 
conceptual models of what a system is and how it operates; this is the basis of 
hypothesis-driven research.  Such conceptual models are always small, local and 
incomplete, and can be imprecisely formulated or biased by preconceived notions of 
how the system should operate [1].  Simplification is essential because the structure 
and kinetics of real systems are too complex to be fully understood by even the most 
experienced and astute experimenter.  A rigorous understanding of gene-to-phene 
relationships will require the development of foundational mathematical, statistical, 
and computational approaches that integrate closely with experiments.  The 
collaboration between the biological and the mathematical sciences communities 
will leverage their complementary expertise to address this grand challenge. 
 
Genome to phenome (G2P) relationships are complex in two very different ways. 
First is the problem of big heterogeneous data.  The various high-throughput ‘omics 
approaches are producing increasing amounts of heterogeneous data on genome 
structure, gene expression patterns, protein patterns, metabolite patterns and many 
higher level phenotypes, particularly those associated with disease.  For instance, it 
is estimated that 10-40% of the genes in the genome are expressed in any one tissue 
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amounting to roughly 2,000 to 8,000 genes expressed, in different combinations in 
different tissues. What do all these genes “do” and are they all equally relevant to 
the phenotype under consideration?  Proteomic and metabolomic studies can 
identify the prevalence of thousands of proteins and metabolites [2].  A single 
RNAseq expression profiling run, can generate more than 10 million “reads” and 
needs to be replicated many times to obtain statistically valid data.  The number of 
possible associations that can potentially exist within and among these various high-
throughput data sets is staggeringly large.  Much of modern statistical 
bioinformatics is geared toward discovering significant and interesting association 
patterns within and among those data sets.   
 
Second, the causal mechanisms by which gene products and environmental 
variables interact to generate phenotypes form dynamically complex interaction 
networks that operate at multiple scales of organization.  Because the interactions 
are multivariate and non-linear it is difficult if not impossible to deduce the 
operation of even a simple network without mathematical modeling.  A rich and 
ever growing array of analytic tools has been developed to tease out the statistical 
associations among genes and traits.  There is no equivalent initiative or body of 
knowledge that deals with the elucidation and analysis of the causal relationships 
among genes and traits.  Dealing with the elucidation and analysis of the causal 
relationships among genes and traits requires carefully designed perturbation 
experiments and a close collaboration between mathematicians and statisticians 
and biologists to overcome the challenges non-identifiability poses. 
 

The Big Challenges in understanding G2P relationships 
 

The greatest challenge in coming to a complete understanding of the casual 
relationship between genes and traits is that most gene-trait associations do not 
obey Mendel’s laws of segregation in the sense that there is no unique relationship 
between the genotype and phenotype. Instead the effects of genes on traits are 
characterized by variable expressivity (the same mutation can produce a range of 
phenotypes) and incomplete penetrance (a given mutation is associated with a 
phenotype in some individuals but not in others).  These phenomena arise because 
genes do not cause traits directly.  Genes do not code for phenotypes but affect traits 
via complex networks of interactions that involve many other genes, proteins, 
metabolites and various environmental variables, as well as the structural and 
functional context in which a particular gene expression takes place.  Of course the 
expression of genes itself is part of the phenotype of a given cell in a given context. 
 
Two widely observed features of the phenotype further degrade a clean and 
unambiguous association between genotype and phenotype: phenotypic robustness 
and phenotypic plasticity.  Robustness refers to mechanisms that stabilize the 
phenotype against genetic and environmental variation.  Phenotypic plasticity is the 
opposite: it is the sensitivity of phenotypes to environmental variables.  Many 
robustness mechanisms are evolutionary adaptations including the multitude of 
homeostatic mechanisms in biochemistry, development and physiology that 
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stabilize form and function against environmental and genetic variation [3-8].  It is 
not clear yet whether the same mechanism can provide both environmental 
robustness as well as genetic robustness, or whether stability against each factor 
that affects the phenotype has evolved separately.   
 
Phenotypic plasticity can be neutral or maladaptive as well as adaptive.  
Environmental variables such as temperature affect the rates of different molecular 
and cellular processes to different degrees and this can have deleterious 
consequences for the traits that depend on those processes, creating one of the 
conditions required for the evolution of mechanisms that stabilize traits.  But if a 
phenotypic variant that is induced by an environmental variable is more fit under 
those novel environmental conditions, mechanisms may evolve that stabilize the 
alternative phenotype in that environment [9].  This is the foundation of adaptive 
phenotypic plasticity in which alternative phenotypes develop under different 
environmental conditions.  Examples of such adaptive phenotypic plasticity are the 
seasonal forms of insects (some being so different phenotypically that they had 
originally been described as different species), the shade and sun leaf shapes of 
trees, the winged and wingless morphs of aphids, the soldier and worker castes in 
ants and termites, and winter plumage in birds.  Behavior is the ultimate plastic 
phenotype [9]. 
 
In summary, the mechanisms that generate phenotypes degrade a close 
correspondence between genotype and phenotype.  One genotype can correspond 
to many phenotypes, and one phenotype can correspond to many different 
genotypes. The phenotype that develops depends as much on environment as it 
does on genetics.  
 
The problems of non-linearity.   
Because gene products operate in complex multi-level networks, the effect that a 
gene has on a phenotype is not a property of the gene itself but depends on the 
structure and kinetics of the system in which it is embedded.  The “activity” of a 
gene product is determined by its structure, which is affected both by the genetic 
sequence and its level of expression, which is determined in turn by transcriptional 
regulators controlled by other genes.  Activity of a gene product can also be affected 
by a variety of allosteric activators or inhibitors which are, in turn, controlled by 
other genes.  The activity of a gene product, in turn, contributes to the structural and 
kinetic properties of the network in which it is embedded, and a multivariate model 
is necessary to account for these nonlinearities.  The kinetics of networks and their 
component parts are almost always non-linear and multidimensional.  As a 
consequence, the effects of genes on phenotypes are almost always non-linear.  This 
non-linear multidimensionality accounts for many of the indirect and context-
dependent effects of genes on phenotypes.   
 
For example, consider a common sigmoidal relationship between the activity of a 
gene product and a phenotypic variable: at low activity there is little or no effect on 
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the phenotype; at intermediate activities the effect is proportional, and at high 
activities the effect saturates (Figure 1).   
 
The exact shape of the sigmoidal or other more complex relationship is not a 
property of the gene but of the entire network: it is a systems property that depends 
on the genetic and environmental background.  In Figure 1A we show how a 
sigmoidal relationship controls the effect of a bi-allelic genotype on a phenotype.  
Changes elsewhere in the network can alter the shape or position of the sigmoidal 
relationship and will thus alter the relationship between the genotype at the gene 
and the phenotype (Figure 1B).  The figure illustrates how a system-dependent shift 
in the sigmoidal relationship can cause the phenotypic effect of a gene to change 
from dominant to recessive [10].  In other words, the system determines whether a 
particular allele will have a dominant or recessive effect on the phenotype [11, 12].  
Different populations, different sub-samples of a population, and different 
individuals can have different genetic and environmental backgrounds that can 
control the effect of a gene in a similar manner.   
 
Non-linearities, such as those illustrated above, can explain the context-dependent 
effects of genes on phenotypes [13].  In Figure 1A the implicit assumption is that 
there is no variation in the genetic or environmental background, so the relationship 
can be graphed as a single line. In effect, it illustrates the conditions that could 
obtain in a single individual at a single time.  In nature no two individuals have the 
identical genetic and environmental background, so a population representation of 
the same relationship could look like that illustrated in Figure 2A, with a broad 
range of possible associations between genotypic and phenotypic values.  The 
correlation between genetic variation and phenotypic variation in the case shown in 
this figure will depend on the actual distribution of genotypic values in the sample 

  
Figure 1. A. Relation between genotype and phenotype. The non-linear relationship makes 
the Aa heterozygote phenotype more like that of the AA homozygote, so A is dominant over 
a.   B.  In a different genetic or environmental background the relationship is shifted (arrow). 
In such an individual the heterozygote phenotype is more like that of the aa homozygote, so 
now the a allele is dominant.   
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being studied, and could be positive, or negative, or not significantly different from 
zero (Figure 2B).  
 
The relationships shown in Figure 2 offer a possible explanation of incomplete 
penetrance and variable expressivity. For incomplete penetrance a population could 
have an allelic distribution illustrated in Figure 2A, so that some individuals with the 
“dominant” AA genotype have a high phenotypic value corresponding to a disease 
state, for instance, and others a low value.  For variable expressivity a population 
could have an allelic distribution illustrated in Figure 2B, where the same genotype 
(AA) has a range of phenotypic values.  Again, exactly what the phenotypic value for 
a genotype like AA is, will depend on the genetic and environmental background.  
 
It is also possible to visualize how robustness and phenotypic plasticity could arise 
in such a system.  Robustness requires that there are no phenotypic effects of 
mutations (or of environmental variation).  In Figure 2 this could be visualized as a 
system in which all genotypes produce the same phenotypic value. Dominance is a 
simple kind of robustness to genetic variation at a single locus.  Phenotypic 
plasticity, where one genotype is associated with many phenotypic values can arise 
if variation in the relationship between genotype and phenotypic value is due to 
variation in the environmental background.   
 
These simple examples are just one possible way in which variable expressivity, 
incomplete penetrance, robustness and plasticity could arise due to a particular 
kind of non-linearity in the phenotypic effects of one gene in a variable genetic and 
environmental background.  There are certainly many other ways in which these 
effects could arise, but there is at present no general way to discover, investigate or 

 

 
 
Figure 2:  Population versions of the graphs shown in Figure 1. A. The relationship 
between genotype and phenotype in a population with genetic and environmental 
variation is potentially different for each individual.  B. Allelic effects on the phenotype 
depend on the genetic and environmental background. In a population illustrated by the 
white ellipses there is a positive correlation of the A allele with the phenotypic value, 
whereas in a different population illustrated by the black ellipses the correlation is 
negative.  
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classify this diversity.  If we now consider that most phenotypes are affected by 
many genes and environmental factors that act in large complex multi-level 
networks, it becomes clear that understanding the causal relationship between 
genomes and phenomes presents an exceptionally difficult conceptual and 
mathematical challenge.  To address this challenge will require close cooperation 
between biologists, statisticians and mathematicians.  
 

Research Goals and Targets 
 
A. Pathways to Phenotypes.  The overarching goal of a G2P program is to elucidate 
the causal connections between genotypes and phenotypes by predicting how a 
particular mutation in a gene causes a specific change in a trait, and how 
multivariate genetic and environmental factors interact to produce a phenotype.  
Such challenges can today only be addressed for simple molecular and biochemical 
phenotypes.  In a biochemical system, for instance, enzymes are gene products and 
their kinetic properties arise from the gene sequence that determines enzymatic 
efficacy and the network that can include allosteric activators or competitive 
inhibitors that affect the rate of the reaction.  The resulting phenotype could be a 
reaction rate (e.g. the rate of release or reuptake of serotonin at a nerve terminal), 
or a metabolite concentrations (e.g. the intracellular or plasma levels of folic acid). 
For higher-level phenotypes, like development or behavior, the causal pathway by 
which a mutation alters a trait can be very complicated, involving many gene 
products, structural features of cells and organs, transport mechanisms between 
tissues and interactions among cells within tissues among many others.   
 
Intermediate phenotypes occur at all points along the casual chain.  Every structure 
and function is a phenotype, from the subcellular machinery to a physiological 
regulatory mechanism to a fully formed organism.  In order to understand higher 
level phenotypes it is necessary to also understand the intermediate phenotypes. 
The importance of this chain of phenotypes is becoming recognized as we move 
away from a statistical view of gene-trait associations to develop an understanding 
of the complex multi-level causes of phenotypes, a view that is becoming known as 
deep phenotyping in the biomedical literature [14].   
 
Phenotypes develop and function at many different spatial and temporal scales. 
Here we list three concrete examples of how phenotypes are defined by multiscale 
processes.  (1) Notch in Drosophila is a point mutation that causes the notch to be 
cut out of the wing.  The notch gene product is involved with inter-cellular 
communication: the final phenotype is due to spatially patterned cell death in a 
large population of cells. (2) Homeotic mutations are point mutations that change 
the fate of one tissue into another (antennapedia causes the antenna to develop as a 
leg; ophtalmoptera causes the eye to develop as a wing); the causal networks are 
very complicated and little-studied. (3) Polydactyly is a dominant trait in which 
affected individuals have additional fingers and toes. Not all individuals who carry 
the mutant allele exhibit the trait (incomplete penetrance), and different individuals 
exhibit different degrees of digit multiplication and digit fusion (variable 
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expressivity).  The mutation is in the GLI3 gene which codes for a transcriptional 
regulator; the developmental biology of digit formation involves cell migration, 
patterned cell death and a complex cascade of tissue differentiation [15]. Multiscale 
multivariate simulations could show how rapid molecular events at the gene level 
are connected to cellular events in an organ (the hand) composed of more than a 
dozen interacting cell types that develops over a period of days to weeks. 
 
These are just three examples out of thousands of cases where point mutations lead 
to profound alterations in higher-level phenotypes.  Many are known from studies of 
model organisms and genetic diseases in humans.  In most cases, however, we know 
little about the molecular effects of the gene product and even less about the 
processes that produce the phenotype.  All we typically have are statistical 
associations showing that an allele is correlated, to some degree, with a phenotype.    
 
B.  Can ‘omics data be used to deduce causal pathways and networks?  High-
throughput ‘omics studies are producing vast amounts of data on gene expression 
and protein and metabolite levels under a great variety of natural and experimental 
conditions.  Much of this information is used to detect associations between genetic 
and phenotypic variables and to then deduce association networks of genes, 
proteins and metabolites[16], and how they are associated with traits of interest.   
 
This vast amount of data is a powerful resource that can be leveraged to enhance 
our understanding the relationships between genes and traits.  But are they 
sufficient to uncover or deduce causal relationships?  Phenotypes are dynamical 
systems, but ‘omics data are typically static snapshots, and, accordingly, current 
methods produce static networks.  To understand causation it is necessary to get 
away from a “networks view” that has no kinetics.  For that we need dynamic, not 
static data. In particular we need accurate time-series and longitudinal studies of 
gene expression, and the accompanying proteomics and metabolomics, and image-
generated visual data on the accompanying phenotypes.  In addition to new data, we 
also need mathematical models and effective abstract representations that better 
capture complex biological interactions. 
 
Many attempts to deduce function from network reconstruction assume that 
connections between nodes have certain functional properties.  Gene network 
reconstruction techniques pioneered by Reinitz [17] assume a sigmoidal 
relationship between the input and output of each node and machine learning 
algorithms can be used to discover functional networks [18].  These networks 
typically deal with only a single level of the hierarchy (e.g. gene regulatory 
networks, protein interaction networks) and current methods are not suited for 
multi-level systems. Parameter estimation for the properties of networks make 
several simplifying assumptions that may not be realistic: networks are at steady 
state (which is seldom the case); parameters are optimized (unlikely because real 
networks are the products evolution, and they are likely to just work “well-enough” 
rather than optimally); the kinetics largely of a single kind (linear, sigmoidal or 
Boolean logic), whereas in real life they are diverse.  Thus although they produce 
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“results,” current network reconstruction methods cannot be expected to find, nor 
represent, the actual networks structure and kinetics.   
 
Some problems with current methods of elucidating the networks that connect 
genes to phenotypes are conceptual; others come from inadequacy of the data.  
Much of the required data are noisy and incomplete.  Noise comes from fact that 
some processes that lead to phenotype are stochastic because of the low 
concentrations of gene products and small numbers of interactors.  Noise and 
inadequacy also come from the fact that systems are imperfectly known and some of 
the observed variation is due to factors that cannot be controlled experimentally.  
Noise also comes from the fact that no two individuals are genetically identical nor 
have the same environmental exposure and history.  This can cause uninterpretable 
noise when experimental samples are pooled from different individuals.  Finally 
patterns of gene expression differ from cell type to cell type and change with time 
and conditions.  This causes noise in data that are taken from tissues with 
heterogeneous cell populations or tissues that are not perfectly synchronized.  
 
In short, to understand G2P relationships we need much more detailed data on the 
kinetics of the processes that make or constitute a phenotype.  Instead of data 
mining, we need carefully designed hypothesis driven science, consisting of detailed 
longitudinal experiments, aided by carefully designed high throughout data.  We 
also need believable network modeling techniques for ’omic-wide scale data, which 
go beyond correlation and incorporate detailed biological information to make 
predictions of the biological mechanistic process.  New formal statistical methods of 
inference for parameters (such as rates and initial conditions) in  partially observed 
multiscale multivariate stochastic dynamical systems are needed. 
 
C. Quantification of Phenotypes.   Phenotypes are diverse and occur at all levels of 
the organizational hierarchy.  In order to develop models that connect genotypes to 
phenotypes we need accurate and unambiguous ways of quantifying phenotypes.   
Molecular phenotypes are perhaps the easiest because we can quantify amounts of 
chemicals and reaction rates.  Cell interactions and the morphology and geometry of 
cells, tissues, organs, appendages and bodies are far more difficult to describe or 
quantify.  Methods need to be developed to quantify and compare such phenotypes 
in biologically informative ways.  For instance, although a morphological shape can 
be described quantitatively by an elliptical Fourier transform, the coefficients have 
no biological meaning and are not helpful in understanding how that morphology 
arose, or how it is biologically related to others.  Image analysis is the route being 
chosen by many groups in cellular phenotyping. The analytics associated to such 
phenotypes involve a combination of statistics and differential geometry. 
Mathematical methods can provide crisp representations of similarity between 
phenotypes through metrics chosen in collaboration with biologists that codify 
carefully what the relevant landscapes looks like. Landscapes of genotype-
environment interactions can thus be mapped into the relevant space of 
phenotypes. Previous examples of effective mappings have enabled computationally 
efficient representations of phylogenetic trees  [19, 20], genome re-arrangements 
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[21], phenotypic landscapes [8] and fitness landscapes [22]. 
 
D.  Principled bottom-up models.  While one route to G2P insights is top-down -- 
through the acquisition of new high-bandwidth data from 'omics and high-
throughput experiments -- another route is through bottom-up mechanistic models.  
And, while one class of mechanisms entails biochemical pathways and circuits, 
another class of mechanisms entails other variables – how environmental stressors 
can control the whole background state of the organism; or how the health of the 
whole proteome (the folding and aggregation and chaperoning state of large 
fractions of a cell's proteome) affects phenotype.   As noted above, it is often not a 
single gene that gives rise to a phene.  But more than that, sometimes the best 
predictor of P (phene) may not be G at all.  For example, as cells age, they undergo 
changes in phenotype due to oxidative damage.  How should we make models to 
understand the change in phenotype that results from oxidative aging?  Maybe such 
models would not begin with particular genes at all; maybe such models would start 
from a description of the oxidative and folding status of a whole proteome at a time.  
In general, a broader perspective than G2P would be GE2P, where E represents 
environmental variables.  And even beyond that, predicting phenotypes will also 
require understanding the dynamics of evolutionary change and the factors that 
contribute to evolutionary fitness landscapes.  This may help us understand the 
"whys" behind the "whats". 
 
There are several ways to support this enterprise.  We encourage synthetic 
biologists to introduce "knobs" to control the relationships between G and P.   We 
encourage a culture of model-driven experiments.  We need models of G2P that 
capture environment and evolution.  We need multi-scale models from fine-grained, 
such as at the biochemical pathway level, to coarse-grained, where phenotype can 
be more readily expressed.  We need models of ensembles of evolutionary 
trajectories.  We need to understand the possible "phase transitions" in evolutionary 
trajectories, such as in speciation.  We need to understand the speed of adaptation 
of populations.  We need ways to understand the "believability" of a model: When 
can we trust a model when its predictions go beyond the known data?  The key 
value of a bottom-up model is in what predictions it makes that go beyond the data, 
that are novel and important, and that define an untested hypothesis or 
extrapolation.  Toward this end, what are the roles of identifiability and "sloppy 
model" concepts?  And, because principled mechanistic biology is a long-term 
dream, we need more support of deep innovation, of the most basic possible new 
science.  Current examples are INSPIRE/ EAGER or NIH Pioneer Awards.  
 
 

The Need and Benefit for Mathematics 
 

The preceding sections make it clear that the practical and conceptual problems 
associated with uncovering and understanding the relationships between genes and 
traits are so vast, so diverse and complex that they cannot be addressed through 
laboratory experimentation alone.  An effective collaboration between biological 



 11 

and mathematical scientists will be essential for progress.   
 
We have shown that biologists, and the solution of biological problems, will benefit 
from mathematics.  But if mathematicians (and their funding agencies) are going to 
invest time and resources it is reasonable to ask what is in it for the mathematician?  
How will Mathematics benefit?  There is excellent reason to believe that 
mathematics will benefit extensively, simply by considering the track record of how 
much has already been gained.  We quote here from Reed (2015) (omitting 
references therein): “In the twentieth century there were three main influences of 
biology on mathematics. The theory of evolution and genetics stimulated the fields of 
statistics, probability, and stochastic processes. The Hodgkin-Huxley equations and 
Turing’s paper on morphogenesis inspired research in reaction-diffusion equations, 
pattern formation, and traveling waves. Sequencing and reconstruction of the human 
genome created new questions in probability, statistics and combinatorics. All three of 
these major influences continue today. In this century, the development of new core 
mathematics stimulated or inspired by biology has been increasing rapidly as more 
core mathematicians have gotten acquainted with and involved in biological 
problems. Biology has created fundamentally new questions in statistics and 
stimulated the field of algebraic statistics. The issue of how to compare teeth in 
paleontology led to new questions in conformal geometry. The transport of materials 
in axons led to new phenomena and theorems in partial differential equations. The 
theory of biochemical reactions stimulated new theorems in dynamical systems, and in 
queueing theory. The problem of how to compare different proposed phylogenetic 
trees led to the development of geometric central limit theorems on nonsmooth spaces. 
Since biological dynamics is very complicated and often parameters are known only 
approximately or not at all, one needs new coarse-grained methods for the 
classification of dynamical systems. The issue of how to detect the shape features of 
proteins stimulated new methods for the shape analysis of surfaces. The effort to 
understand central pattern generators in the nervous system led to new work 
exploiting groups of diffeomorphisms to characterize symmetries in the solutions of 
dynamical systems. The problem of providing low dimensional approximations for very 
large data sets has led to new questions in harmonic analysis.”   
 
These are but a few examples of how mathematics has been challenged and 
enhanced by addressing problems in biology.  Although no one can predict the 
future, it seems reasonable to suppose that the very difficult problems that arise 
from the need to understand causal G2P relationships will pose new and diverse 
challenges for mathematics.  Many new mathematical methods have been developed 
over the last 20 years which are not taught other than at the graduate mathematics 
level, although they would be very useful in addressing some of the G2P problems: 
(1) Differential geometry for the analysis of phenotypes through imaging thus 
allowing the study of images through deformations and invariance properties. (2) 
“Shape analysis” for the study of cells.  (3) Algebraic geometry for identifiability (for 
instance for Gaussian Bayesian networks). (4) Sparsity and optimization techniques 
for over-parametrized systems. (5) Bayes factors and Bayesian information criteria 
for model generalizability and inference. (6) Data integration methods through 
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generalized singular value decomposition and the design of specific, biologically 
meaningful metrics for heterogeneous data. (7) Graph Limit theory for large graphs.   
 
Many biological problems push the limits of current research and require new 
Mathematics to be developed. These will take longer to develop and the benefits of 
doing so will only be recognized later, but underdeveloped areas seem to include:  a) 
Topology of Dynamical systems.  b) Geometric measure theory for incorporating 
non-uniform distributions into persistent homology research. c)  Asymptotic theory 
for exponential random graph models (linked to computations of partition functions 
in statistical physics). d) Identifiability in systems of stochastic differential 
equations. 
 
A major challenge for mathematics comes from the realization that our ability to 
understand G2P relationships suffers from a lack of concrete approaches to 
modeling multiscale processes in biology (different time-scales, different spatial 
scales, different processes): no one is really doing this well, nor do we even have 
good ideas about how to approach this.  It is likely that we will not be able to fully 
understand G2P unless this can be done, and we see a major role for 
mathematicians in developing techniques and concepts for multiscale modeling 
whose usefulness would far exceed the problems arising from G2P.   
 
 

Resource and Infrastructure Needs 
 
A.  Bringing Biological and Mathematical Sciences Together: Challenges and 
Opportunities in the Study of G2P Relations 
 
Human Resource Infrastructure.  Significant potential exists for collaboration and 
synergism among the biological and mathematical sciences in investigating and 
resolving the difficult problems associated with the relationships between genes 
and traits.  Indeed, such collaboration is essential to move our understanding of 
causal G2P relationships forward.   
 
There are, however, major challenges in developing the right questions to ask, the 
methodologies to address the diversity of problems, and developing the right kinds 
of collaborations among biologists and mathematical scientists.   
 
Collaborations among biologists and statisticians are already widespread, and 
despite excellent examples of collaboration among biologists and mathematicians 
these are substantially more scarce.  Part of the reason for this is that 
mathematicians are typically enrolled late in the process, after the experiments have 
been designed and largely completed.  They are then asked whether it would be 
possible to “model” the system under investigation.  This makes mathematicians 
look like “helpers” rather than primary investigators, which is unattractive 
considering the potentially large time investment involved. 
 



 13 

Biologists are asking mathematicians to “take a bet” on (what for the biologist is) an 
interesting problem; but it is difficult for a mathematician to get a biologist 
interested in doing the right kinds of experiments.  To be effective, and to give 
mathematicians an investment in the problem at hand, they should be involved from 
the very beginning in the design of experiments, the definition of questions and the 
choice of data to be gathered.  Another reason for the scarcity of collaborations is 
that most biologists know little mathematics and have little appreciation of what 
math can bring to the table.  Statisticians in a way have an easier role because they 
deal with practical issues and thus have a different relationship with biologists than 
mathematicians do who (rightly or wrongly) seem, to a biologist, to be more 
abstract and theoretical.  Conversely, if a mathematician has a model, can she get a 
biologist to test it?  This is unlikely, for the same reason that mathematicians would 
be reluctant to dive into a biological problem; the overhead and investment are just 
too large.   
 
There are currently few reward systems for this kind of collaboration.  
A long-term program to enhance and facilitate the kinds of Bio-Math collaborations 
that are essential for moving G2P problems forward would be to develop 
foundations by promoting teaching of a broad array of mathematics in the context of 
introductory biology classes (and not just see mathematics as a co-requisite for a 
biology major, nor as just calculus and linear algebra, but geometrical and 
topological intuition as communicated in useful `pictures’).  It should be a two-way 
street, involving cross-training of young "life scientists" and "mathematical 
scientists" so they can talk effectively with each other, and understand what can and 
cannot be done experimentally and theoretically.   
 
There are already many applied mathematicians who work on biological problems, 
although, apart from work on gene regulatory networks, few if any work on 
problems relevant to G2P. These investigators are often motivated by discovering 
the general principles by which a biological system operates, which is exactly what 
is needed.  It is among this group that, in the short term, effective collaborations on 
G2P problems could also be developed, broadening the type of mathematics used 
beyond the simple framework of PDEs to geometrical, topological and algebraic 
approaches.  
 
B.  The need for an interactive community.   The vast field of G2P encompasses 
molecular biology, genetics, physiology, biochemistry, biophysics, development, 
morphogenesis, evolution and many other areas of biology.  Just as individual 
biologists don’t know all of Biology, mathematicians may not be aware of the 
diversity of techniques and algorithms that might suitable to address the diverse 
problems that arise in understanding how genes affect higher level traits.  A user-
friendly environment, perhaps on-line, that enables communication, problem 
sharing and brain-storming among investigators working on G2P problems is 
therefore desirable.   
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C.  An infrastructure for encoding and archiving phenotypic data. Methods need 
to be developed to describe or encode phenotypes in a way that is relevant to 
mathematical methods that study the causes and consequences of those phenotypes.  
A resource perhaps analogous to the Protein Data Bank (PDB: 
http://www.wwpdb.org/) or to BioConductor (BioC: http:// 
https://www.bioconductor.org) could be useful, but needs to be developed in 
consultation with the diversity of users. 
 
D.  A software environment for dynamical multiscale systems.  We need a 
flexible, expandable open source software environment for analyzing and 
simulating G2P mechanisms.  The need for such software is evident by the fact that 
several research groups have attempted to develop software specifically designed to 
simulate complex biological mechanisms, especially at the cellular and subcellular 
level (e.g. Virtual Cell http://www.nrcam.uchc.edu/,  BioNetGen 
http://bionetgen.org/index.php/, CellBlender 
http://www.mmbios.org/index.php/cellblender-1-0-1 and E-Cell http://www.e-
cell.org/), but none of these have been widely adopted, nor do they provide for the 
broad diversity of multi-scale biological processes and interactions that lead to 
complex phenotypes [23]. 
 
Some multiscale problems lend themselves to agent-based modeling [24], but 
current techniques are far too slow for the kinds of problems that need to be 
addressed.  Methods need to be developed to speed up agent-based models.  
 
What is needed is a programming environment that can handle diverse multiscale 
problems, support rapid prototyping of models (perhaps something like Julia [MIT 
http://julialang.org/], or an open-source version of Simulink [Mathworks], or extra 
modules added to the already exemplary  “R” environment, for instance an R4G2P 
Systems Biology project similar to the successful ‘omics system BioConductor [25].  
It would contain algorithms and libraries, be extensible open-source, and accessible 
from different programming languages.  It should be a platform in which anyone can 
develop kinetic models that operate at many scales of the organizational hierarchy, 
from molecules to cells to organisms.  It should also contain programs that can 
translate conceptual and mental models into appropriate mathematics.     
 
Conclusions    
Phenotypes are extremely diverse, they include both structure and function, and 
occur at all levels of organization.  Phenotypes are generated by complex, 
multivariate, multilevel, nonlinear processes in which gene products, environmental 
factors and context all play significant roles. This makes the relationship between 
genes and traits, and between genetic variation and phenotypic variation, 
exceptionally difficult to understand and unravel.  
 
Specific goals and challenges we identified are the following.  Understanding the 
causal pathways by which genes connect to traits will require mathematical 
modeling and a close collaboration between biological and mathematical scientists.  
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Mechanisms and infrastructure need to be developed to identify fruitful areas of 
collaboration and to encourage and reward such cooperation.  Phenotypes are 
dynamical systems but there is a sparsity of kinetic data on the development and 
function of most phenotypes. Much of the data available today has insufficient 
spatial and temporal resolution to develop adequate mathematical models. In 
particular we need accurate time-series and longitudinal studies of gene expression, 
with the accompanying proteomics and metabolomics, and visual data on the 
accompanying phenotypes.  An additional pressing need are mechanisms and tools 
to describe and quantify phenotypes, at all levels of the organizational hierarchy, 
which are relevant to mathematical modeling.  Although high-throughput ‘omics 
data are a voluminous and ever-growing resource, it is not clear that they are 
sufficient to uncover or deduce the causal pathways that link genes and traits. There 
is a need for developing techniques for multi-scale modeling and improved agent-
based modeling.  Research on the causal processes that lead to phenotypes would be 
much enhanced by the availability of programming environment, perhaps analogous 
to R, that is open-source, expandable, accessible to users with different skill levels, 
and capable of multiscale programming.  
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