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Over the last two centuries, mathematical models have developed as tools in the description, 
forecasting, and analysis of the spread of infectious diseases. Beginning with the work of 
William Farr on smallpox (1840), public health researchers have used numbers and modeling to 
explain and predict the courses of epidemics. An important insight of early epidemiology was 
that mathematical theory helped scientists understand how the course of infection within a 
person and transmission to others can explain national and global epidemics. From Farr’s auto-
regression models and Florence Nightingale's statistical analyses, to Ross-McKendrick 
compartmental models, to modern agent-based network models, a rich ecosystem of epidemic 
models can now inform statistical inferences, public policy design, and scientific research. 

Because infectious disease epidemics are social processes, all epidemiological models contain 
behavioral assumptions. However, these assumptions are often implicit, and their relation to the 
knowledge accumulated in basic behavioral research is not always clear. The current paper 
summarizes a workshop designed to improve the conceptualization of impact of human 
behavior in epidemiological models. 

The workshop started with seven pre-recorded plenary review presentations (see videos). Each 
presentation was followed by a plenary panel discussion (see notes attached), and three 
parallel open discussions in breakout rooms. Five of the seven plenary talks clarified how 
human behavior is incorporated into extant epidemiological models. The other two talks 
reviewed recent behavioral research with clear implications to epidemiological models. The 
meeting agenda and the list of attendees appear in the Appendix. The conference website is 
here. 

Conceptualization of Human Behavior in the Leading Epidemiological Models 

The five plenary talks, summarizing extant epidemiological modeling, highlighted five main 
approaches to the conceptualization of human behavior: (a) classical models, (b) contact 
structure models, (c) rational choice models, (d) inductive game models, and (e) network and 
agent-based models.  
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Classical epidemiological models build on explicit assumptions concerning the spread of an 
infection and tend to lack explicit assumptions concerning human behavior relevant to 
transmission. Yet, the leading models include implicit behavioral assumptions. Specifically, they 
assume that individuals move through different health states. For example, in the basic 
“Susceptible, Infected, or Recovered” (SIR) model, the states are Susceptible, Infected, or 
Recovered with immunity (or removed), and the transition between these three states is 
captured parametrically. The parameters in classic SIR models are transmission and recovery 
rates. When these parameters are neither time nor state varying, the resulting models impose 
strong implicit behavioral assumptions - namely that behavior is invariant to persons, situations, 
or times. 

Contact structure models extend compartmental models by parametrically capturing mixing 
rates among exogenous defined types. These models tend to capture non-time varying average 
behaviors differentiated by predetermined groups such as different ages, genders, or residence 
locations. Implicit in this approach is the assumption that people might select their type (e.g., 
people who use drugs) before the estimation of the groups’ parameters but do not change their 
type after the estimation.  

Rational choice models replace the static behavioral assumptions described above with the 
rationality assumption. This assumption implies a decomposition of the underlying behavioral 
model into three factors: (1) the set of strategies that everyone can use; (2) the information the 
decision maker perceived and the subjective value (utility) of the feasible outcomes; and (3) the 
way individuals choose among their strategies. 

Inductive game models generalize rational models by adding specific biases and abstraction of 
learning. For example, these models have been used to capture factors like anchoring and 
groupthink. 

Networks and agent-based models extend the models presented above by incorporating the 
environment, pre-existing contact patterns, incentives, and strategy of each individual. Under 
one cognitive interpretation of this assumption, each agent observes the behavior of its 
neighbors (and maybe also more removed others) and tends to select the modal choice. 

Examples of Behavioral Models and Questions that Can be Used to Improve 
Epidemiological Models and Disease Prevention 

The two behavioral plenary talks summarized two lines of behavioral research with clear 
implications to epidemiological models. The first line (Pronsky’s talk) focused on basic decision 
processes. This research suggests that people tend to rely on small samples of past 
experiences. This tendency implies bimodal reaction to rare risks. Where most people 
underweight rare risks (like the risk of infection), significant minorities tend to overweight certain 
rare risks (as in the risk of vaccination side effects). 
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The second behavioral plenary talk (Albarracin’s talk) addressed the impact of communications 
and behavioral interventions, centered first around the paradox that even though nobody doubts 
the impact of information on behavior and health behavior specifically, the actual impact of an 
informational message is close to 0. Therefore, we need to understand the conditions under 
which information has an influence, the temporal lag of this influence, and interactions with 
human behavior over time. In addition, we need to explicate and understand the impact of other 
interventions, including those that have the potential to impact behavior directly. This 
understanding must also be contextualized within the historic course of an epidemic and how to 
best match interventions to the stage of an epidemic.  

Open Questions, and Suggested Directions for Future Research 

The panels and breakout rooms discussions highlight four main obstacles to effective 
accumulation of knowledge between epidemiological modelers and behavioral scientists.  First, 
the large volume of the behavioral literature, and the situation-specific nature of many of the 
hypotheses, imply that it is difficult for epidemiological modelers to identify the behavioral 
research that can help them improve their assumptions. Second, the technical nature of the 
leading epidemiological models, and the implicit nature of the behavioral assumptions, imply 
that it is difficult for behavioral scientists to propose refinements of the leading models. Third, 
the absence of a general model of behavioral prediction and change limits progress by a 
multiplication of studies of the same constructs with different names and frequent reinvention of 
the wheel due to disciplinary silos. Fourth, although the epidemiological data for some 
epidemics are available in real-time, large-scale efforts to collect behavioral data longitudinally 
are nonexistent. 

We believe that NSF can help address this obstacle by encouraging the submission of 
proposals that explicitly present and compare alternative refinements of the leading 
epidemiological models and advance behavioral, social, and economic research that can 
contribute to those refinements.  This report summarizes research ideas that emerge from the 
discussion in the breakout rooms. Those relevant to the Division of Mathematical Sciences 
appear below. Other ideas potentially relevant to other divisions (e.g., SBE) appear in the 
Appendix. 

I. Problem of epidemiological-modeling language. An obstacle that the conference 
identified concerns the language of epidemiological models. Thus, one 
recommendation is to fund projects that translate epidemiological models into a 
language that social, behavioral, and economic scientists can understand and help 
refine. Projects that, for example, create new nomenclature that exists in the social, 
behavioral, and economic scientists will help to then refine the incorporation of 
behavior into the models.  Another example involves the addition of “behavioral 
sensitivity analysis” to epidemiological analyses. Although we see the value of 
starting with the simplest model that captures the results (even if its behavioral 
assumptions are inconsistent with basic behavioral research), it is important to know 



 

 
 

 

 

 
 

 
 

4 

if the predictions are sensitive to the replacement of the simplified assumptions with 
the assumptions suggested by the relevant behavioral literature.   

II. Problem of limiting, unrealistic assumptions within epidemiological modeling. 
Another problem is that the assumptions of epidemiological models lack realism and 
precision. For example, SRI models often treat behavior as classes of individuals, 
such as people who use drugs, without more explicit recognition that people vary in 
the extent to which they perform a behavior as a function of contextual variables 
such as space, time, and interpersonal contexts. Therefore, future multi-disciplinary 
projects could review model assumptions more explicitly and investigate how to 
make improvements in these assumptions to make them consistent with reality. For 
example, research could tackle a particular limitation, seek a relevant theory, and 
test model improvements to offset the problem. Projects that uncover limitations and 
rigidity in modeling assumptions would also be worthwhile. For example, researchers 
could systematically evaluate whether models closely reflect reality through a 
combination of inductive and deductive methods, systematic review, and/or analyses 
of how models perform with data from different diseases, periods, or populations. 
This problem is complex and includes the different facets described below. 

a) Absence of a comprehensive, agreed-upon formulation of human behavior 
to incorporate into epidemiological modeling. A problem that plagues the 
behavioral, economic, and social sciences is the lack of a comprehensive 
formulation of behavior that is shared across scientists and disciplines. 
Therefore, it seems desirable to encourage multi-disciplinary projects that select 
or build a broad, bold approach to explain behavior and health outcomes during a 
pandemic. 

b) Insufficient attention to basic behavioral, social, and economic research to 
build epidemiological models. Another limitation is that there is no clear 
pipeline to ensure rapid, mutual influences between basic research in behavioral, 
social, and economic sciences, and epidemiological modeling. Studies testing 
specific basic processes to develop novel questions for epidemiological modeling 
seem worthwhile. 

c) Insufficient incorporation of model of policy decisions. Although 
epidemiological models often present the outcome of different policy scenarios, 
how decisions are made is rarely modeled even though this aspect is key from 
an explanatory and intervention perspective. Thus, it would be useful to promote 
research on the factors that influence decisions and information use by 
policymakers and integration of these factors into epidemiological models. 

d) Inadequate incorporation of complex interactions between individual and 
cultural differences. Another limitation is that individual behavior varies as a 
function of attitudes, norms, risk perceptions, and other motivational and 
cognitive factors that can interact with group differences, including culture. Thus, 
projects that model how the salience of cultural aspects (e.g., from race-targeted 
PSAs or neighborhoods with different demographic compositions) changes 
people use of internal representations (e.g., norms versus perceptions of risk) 
should be investigated. Research that compares performance of alternative 
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epidemiological methods to model these questions should be particularly 
encouraged. 

e) Lack of nuance and absence of recognition that the outcome of a behavior 
can affect performance of that behavior in the future. Traditional 
epidemiological models fail to provide nuanced depictions of behavior, especially 
when behaviors are correlated with outcomes. Therefore, it would be beneficial 
for researchers to work on projects that rely on social, behavioral, or economic 
theory to model recursive relations by which behavior affects outcomes but 
outcomes also affect behavior, sometimes in combination with policy 
interventions. 

III. Lack of theory for population level phenomena. Human behavior models are 
quite sophisticated in individual behavior but naive in many other ways, including the 
population level kind of predictions. This problem may be ameliorated with research 
on the processes leading to different outcomes at the aggregate versus the individual 
levels and determining the effect of those processes on epidemiological models. 

IV. Absence of systematic methods to define epidemiological models. Another 
area for improvement identified during the conference concerns the lack of 
systematic, agreed-upon methods to define epidemiological models. For example, a 
project may tackle parameter selection and establish possible ways of balancing 
data-driven and theory-based approaches. Whereas data-driven approaches have 
limitations such as data completeness, bias, and sensitivity, adding complexity to the 
model increases computational burden. Tests of systematic methods to select 
parameters for epidemiological prediction are therefore desirable. 
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APPENDIX 

Other Research Ideas about SBE Research Relevant to Epidemics 

1. Studies that clarify the co-existence of insufficient sensitivity to the risk of pandemics, 
and oversensitivity to the risk of vaccination. These studies should examine the 
relationship of this pattern to basic research in decisions from experience. 

2. Studies that use machine learning to predict vaccination rates. 
3. Research on the failure to understand expert evaluation and its relation to the tendency 

to trust fake news. 
4. Studies that integrate basic decision-making research that focuses on deviations from 

rational choice into epidemiological modeling. 
5. Studies of the effect of experience on the way people treat objective data and expert’s 

evaluation of data. 
6. Studies of the best enforcement policies for different regulations and clarification of the 

feasibility of enforcing different regulations. 
7. Studies of the impact of enforcement and incentives on vaccination. 
8. Studies of the way people learn from the experience of others in the context of 

pandemics. 
9. Exploration of the conditions under which beliefs persist and the role of social pressure. 
10. Studies that clarify the difference between predictions of short term and long-term 

epidemiological outcomes. 
11.  Implementation science projects in which a research group teams up with a government 

jurisdiction (e.g., a state or county) to design a policy test and then implement and study 
the policy. 

12. Projects that study vaccination by integrating economic factors such as good distribution 
and incentivization and psychological variables that constitute immediate determinants 
of behavior. 

13. Projects that integrate insights from behavioral prediction models into social network 
theory and research. 

14. Research that collects longitudinal data to compare the impact of various behavioral, 
social, and economic variables at different points of a pandemic or at different phases of 
a given policy implementation (e.g., vaccination). 

15. Research that combines longitudinal and experimental methods to develop a necessary 
and sufficient account for the role of behavior in epidemics, comparing different 
infections of varying characteristics (e.g., airborne versus sexual transmission). 

16. Research using meta-analysis including individual-level synthesis to understand the 
impact of different interventions to control epidemics, particularly projects that compare 
cultures, nations, or demographic groups and seek to understand mechanisms of 
change. 

17. Research on business and government processes related to privacy and information 
sharing to determine what improves data access and how actors make decisions about 
data sharing. 

18. Projects that seek to understand variability in the social and/or economic impact of 
different diseases, particularly in combination with social health disparities. 
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19. Projects that study media impact on policy and citizens’ reactions, including research on 
social media, during an epidemic. 

20. Research on the reasons for population noncompliance during an epidemic. 
21. Research that separates different reasons for vaccination hesitancy and investigates 

ways of addressing it using a combination of experimental and modeling methods. 
22. Projects designed to estimate and understand the impact of communication, both 

positive messages as well as misinformation/disinformation, on health behavior during a 
pandemic. 

23. Research that uses computer science advances to better create or disseminate 
messages during a pandemic. 

24. Projects that test different methods of tailoring information to individuals, including 
projects that use computational methods. 

25. Research that uses experimental methods to identify the best interventions to increase 
vaccination. 

26. Research that studies fatigue and passive responses in the population and how these 
vary with the stage of a pandemic. 

27. Research on fear appeals and reactions to fear during a pandemic. 
28. Studies of trust in information and how the public health system makes communication 

decisions, particularly in interaction with government factors and ideas about the 
democratic process. 

29. Research on how changes in scientific information are communicated and the best 
methods of revising beliefs in response to such changes. 

30. Research that tests theories of how different messages mix within a network or over time 
to produce positive or negative attitudes during a pandemic. 

31. Studying how different government agencies interact to make decisions and the impact 
of those interactions and processes on the pandemic. 

32. Research that innovatively integrates multiple data sources (e.g., social media, 
geolocation, survey) to test theories about interaction in networks. 

33. Research that investigates the role of opposing forces in the decision to vaccinate (free 
ride vs. network peer effects) and integrates these forces into epidemiological models. 

34. Research projects that use natural experiments and propose methods to address 
limitations such as the lack of a valid control group (i.e., everyone is being treated in 
natural experiments during epidemic/pandemic).  

35. Research projects that investigate how to overcome data limitation. In particular, 
research that addresses lack of micro level data about behavior is necessary. A lot of 
modeling groups use publicly available data which is aggregated. But if behavior 
changes in an epidemic, this changes the dynamics even if the mean is constant. 

36. Multi-disciplinary projects that investigate inconsistencies across disciplines in the 
definitions such as “rationality”. 

37. Research projects that investigate how to deal with intertemporal forecasting in models 
with a rational decision maker and the model endogenously changes throughout time. 

38. Research projects that investigate what should be included in utility function when the 
objective is maximizing utility. For example, should we have altruism in the case of 
COVID, when people are voluntarily social distancing? 

39. Research projects that study the rules or aggregation for different psychological and 
behavioral variables. If you're deciding individually or as a family or a group, they're 
probably clear on differences between emotion and how that will transfer to the group. 
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And something like deciding on a math problem, which is self-evidence. So, with one 
individual proposing that, that becomes the solution for the group. 

40. Research projects that investigate how to use current agent-based models to add 
cognitive models that have value in them. 
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SUPPLEMENT 

Agenda Summary 
Thursday, May 6 

EDT CDT Event 

11:00 AM 10:00 AM Introduction (Moderator: Albarracin) 

11:20 AM 10:20 AM Epidemic modeling and behavior (Plenary: Eubanks; 
Panelists: Auld, Dangerfield, Sheeran; Moderator: 
Reluga) 

12:56 PM 11:56 AM Behavioral phenomena and their connection to 
epidemics (Plenary: Plonsky; Panelists: D’Onofrio, 
Finnoff, Gonzalez-Vallejo; Moderator: Erev) 

2:32 PM 1:32 PM Measuring response to policy changes and pathogen 
risks (Plenary: Murray; Panelists: Anderson, Bayham, 
Holtgrave; Moderator: Fenichel) 

4:08 PM 3:08 PM Network structure in epidemic models with behavior 
(Plenary: Fefferman; Panelists: Miller, Ognyanova; 
Vullikanti; Moderator: Reluga) 

Friday, May 7 

EDT CDT Event 

11:00 AM 10:00 AM Introduction 

11:08 AM 10:08 AM Rational epidemic theory and game theoretic models 
(Plenary: Toxvaerd; Panelists: Gonzalez. Reluga, 
Werning; Moderator: Fenichel) 

12:44 PM 11:44 AM Connecting epidemic modelling to society (Plenary: 
Fenichel; Panelists: Sattenspiel, Tan, Tertilt; Moderator: 
Erev) 

2:20 PM 1:20 PM How communication and information lead to learning 
and behavior (Plenary: Albarracin; Panelists: Bauch; 
Palacios; Peters; Moderator: Erev) 

3:46 PM 2:46 PM Mini-Pitch Session 

EDT = Eastern Daylight Time; CDT = Central Daylight Time 
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