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1 Introduction

As we begin to reach the limits of classical computers, quantum com-
puting has emerged as a technology that has captured the imagination of the
scientific world and the public, as a potentially revolutionary advance.

The particular way in which quantum computing extends classical comput-
ing means that one cannot expect arbitrary tasks to be sped up by a quantum
computer. However, early theoretical work showed that in certain structured
problems — for example, the famous factoring problem underlying modern en-
cryption — quantum computers offer exponential computational speedups over
the best known classical algorithms [1]. Should these results translate broadly,
quantum computing stands to transform society much like the invention of
digital computing.

While for many years, the ability to execute quantum algorithms was only a
theoretical possibility, recent advances in hardware mean that quantum com-
puting devices now exist that can carry out quantum computation on a limited
scale. Thus it is now a real possibility, and of central importance at this time,
to assess the potential impact of quantum computers on real problems of in-
terest.

One of the earliest and most compelling applications for quantum com-
puters is Richard Feynman’s idea of simulating quantum systems with many
degrees of freedom [2]. Such systems are found across chemistry, physics,
and materials science. To precisely understand the potential impact of quan-
tum computing in the scientific context of simulating systems of interest in
chemistry, condensed matter physics, and materials science, we organized a
workshop sponsored by the National Science Foundation, titled Enabling the
Quantum Leap: Quantum Algorithms for Quantum Chemistry and Ma-
terials.

The workshop was attended by roughly 40 participants drawn from a wide
range of institutions, from the disciplines of chemistry, physics, materials sci-
ence, and computer science, and with representation from both academia and
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industry, and consisted both of traditional presentations as well as multiple
sessions of targeted small group discussion. At the beginning of the work-
shop, our stated goals were to:

1.

Identify central problems in chemistry and materials science, in the ar-
eas of electronic structure, quantum statistical mechanics, and quantum
dynamics, as target problems for quantum computers,

. Identify areas for new quantum algorithms and critical aspects of current

quantum algorithms to improve for applications to the above problems,

Bring together active and interested workers in the fields of quantum
chemistry, quantum materials science, and quantum algorithms,

Explore how to educate a new generation of scientists who are trained
both in the application areas of quantum simulation as well as in quan-
tum algorithms,

Propose concrete mechanisms (e.g. funding) which will help advance
the field and achieve convergence in efforts from different disciplines,

. Interface academic and industry efforts in theoretical algorithms, soft-

ware, and hardware, for chemistry and materials simulations,

Prepare a workshop report for the community which will provide rec-
ommendations on how to advance the field.

This is the report described in point 7. We have aimed to capture the fla-
vor of the discussions and to provide context for the scientific questions; any
omissions and errors are the sole responsibility of the authors. We hope that
this report will prove useful in advancing the field of quantum simulations and
algorithms for chemistry and materials science in the coming decade.

1.1 Summary of open problems and

recommendations

Here, we summarize open problems and recommendations from all the forth-
coming sections. Each class of open problems is accompanied by a set of key-
words. We recommend referring to the appropriate sections for further details
and context.



1.1 Summary of open problems and recommendations

1.1.1 Simulation challenges

Quantum chemistry — The description of multi-reference quantum chemical
problems at the same level of accuracy as single-reference quantum chemical
problems (see Fig. 2.1). Quantitative modeling in large basis sets. Consider-
ation of aspects beyond pure electronic structure, such as environment and
dynamical effects. See Sec. 2.1.

Quantum molecular spectroscopy and dynamics — Reaching the high ac-
curacy of molecular spectroscopy. Non-rigid molecules. Basis representations
for molecular spectroscopy. See Sec. 2.2 and Sec. 2.3.

Correlated electronic structure in materials — Strongly correlated electrons
and spins, e.g. high-temperature superconductivity and its nearby phases, frac-
tional quantum Hall effect and Moiré materials, interaction-driven phases in
two-dimensional materials. Reaching the thermodynamic limit in quantum
simulations and associated small energy scales that give rise to competing
phases. See Sec. 2.4.

Dynamical quantum effects in materials — Spectral functions, real-time
non-equilibrium dynamics in strongly driven correlated materials. Quantum
dynamics at long times and emergence of thermodynamics. See Sec. 2.5.

1.1.2 Quantum algorithms

Qubit representations — Reducing redundancy in first quantization. Choice
of electronic basis functions, handling the Coulomb cusp. Exploiting symme-
tries. Specialized representations for models. Basis representation for non-
electronic-structure problems. Boson-to-qubit representations. See Sec. 3.2.

Quantum algorithms for ground and excited states — Heuristic analysis
of adiabatic state preparation and quantum imaginary time evolution in real
problems. Better numerical and practical understanding of different ansatz in
real problems. Relationship between different types of coupled cluster ansatz.
Preparation methods for tensor networks. Representational power of deep
tensor networks. Optimization in variational algorithms. Understanding and
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improving robustness of variational methods against errors. Practical perfor-
mance and relationship between different excited state methods. Proof-of-
principle demonstrations. See Sec. 3.3.

Phase estimation — Tradeoff between depth and spectral resolution. Error
mitigation. Incorporation of better classical post-processing to extract more
eigenvalues. Replacing Hamiltonian evolution by different types of evolution.
See Sec. 3.4.

Time evolution — Improving system-specific time evolution methods. Better
bounds on the runtime using structure of the initial state and state-specific
simulation methods. Quantum walks in place of time evolution. Practical re-
duction of runtime, improved compilation of time-evolution circuits. Space-
time tradeoffs and depth reduction. Time evolution error mitigation without
active error correction. Exploring connections to classical long-time evolution
ideas such as long-time integrators. See Sec. 3.5.

Finite-temperature algorithms — Benchmarking and deciding between many
current proposed algorithms. More heuristic evaluation for problems of chem-
istry and physics, actual implementations on quantum devices. Avoiding long
thermalization times and ancillae especially in the near-term era. Additional
formulations for finite-temperature simulations. See Sec. 3.6.

Hybrid quantum-classical methods — How to best adapt quantum algo-
rithms to classical embedding frameworks. Hamiltonian representations of
actions. More efficient evaluation of Green’s functions and density matrices.
New quantum-based embedding ideas, such as based on properties of quantum
circuits. Better feedback between quantum and classical parts of the algorithm,
improving classical optimization. See Sec. 3.7.

Benchmark systems — Benchmarks to compare quantum algorithms against
each other. Benchmarks to compare against the best classical methods. Includ-
ing data for multiple observables. Systematic molecular and material bench-
marks where complexity can be tuned. See Sec. 3.8.



1.1 Summary of open problems and recommendations

Reading out results — Reducing the number of measurements e.g. for varia-
tional methods. Reorganizing terms. Exploiting structure in Green’s functions.
Avoiding the need to re-prepare the initial state. See Sec. 3.9.

1.1.3 Software stack

Quantum compilers, libraries, circuit simulations — Developing libraries
of common subroutines. Optimal compilation into gates. Fast general-purpose
quantum circuit simulators. Specialized quantum circuit simulators. Approxi-
mate contraction methods, potentially using domain knowledge. Cross-platform
operation of different quantum software libraries. Improved tools for near-
term experiments. See Sec. 4.

Interfacing to classical simulation software — Standardizing interfaces;
flexible middleware; better packaging of specialized codes; modularization of
large codes. See Sec. 4.

1.1.4 Broader issues

Diversity — Accumulating best practices. Starting from leadership. Improving
undergraduate internships. Engaging social sciences to quantify progress. See
Sec. 5.

Academia and industry — How to engage with quantum hardware. Under-
standing intellectual property rights and negotiations. Balancing organiza-
tional sizes and power differential. Collective organizations for academia. See
Sec. 5.

Education and training — Encouraging basic course requirements in quan-
tum mechanics. Incorporating basic quantum information and quantum com-
puting into introductory QM. Introducing quantum into introductory CS. Grad-
uate level programs with cross-disciplinary course requirements. Support for
multi-institutional efforts in education and curricula development. Working
with industry in quantum education. See Sec. 5.
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1.2 What is a quantum computer?
How is it relevant to quantum simulation?

A quantum computer is a device which computes by manipulating quantum
information [3, 4, 5, 6, 7, 8]. The basic unit of quantum information, called
a qubit, is synonymous with a two-level quantum system. Denoting the two
basis states of a qubit as |0), |1), the general single-qubit state may be a super-
position ¢y|0) 4 ¢;|1) where ¢y, ¢; are complex numbers. For n qubits, there are
2" basis states, which can be enumerated as the bitstrings [00. ..0), [00...1),
etc. To specify a general quantum state, one must specify a complex coefficient
(amplitude) for each basis state, e.g. coo..0, Coo..1 etc. The exponential number
of amplitudes needed to specify the state of n qubits stands in contrast to the
linear amount of information needed to encode a single bitstring, the state of
n classical bits.

Measuring the qubits (in this basis, often referred to as the computational
basis), collapses the state onto the measurement outcome, which is a single
(random) bitstring x that appears with the probability |c,|%. Despite this prob-
abilistic interpretation, the fact that quantum amplitudes can be complex pre-
vents one from treating quantum states as classical probability distributions,
which is at the heart of the quantum phenomenon of entanglement, the cor-
relations in a system that cannot be generated by a classical distribution of
states. The possibility of creating entangled states in a space of exponentially
large dimension and manipulating these states by exploiting their construc-
tive or destructive interference is the source of the computational power of a
quantum computer.

A convenient way to describe the manipulation of quantum states in the
context of quantum computation is via few-qubit operations called gates. The
action of each gate can be viewed as a unitary time evolution of the n-qubit sys-
tem under a suitable Hamiltonian that acts non-trivially only on a few qubits
(usually one or two). Any quantum computation can be expressed by a se-
quence of elementary gates, called a quantum circuit, applied to an initial
basis state, e.g. |00 . . .0), and followed by the measurement of some set of the
qubits.

The exponential separation between quantum and classical information does
not simply mean that quantum computers can compute answers to problems
“in parallel” with an exponential speedup, for example, by storing multiple dif-
ferent solutions in the many amplitudes. This is because reading out from a
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quantum computer destroys the state, and thus to harness the power of quan-
tum information, a quantum algorithm must coordinate interference between
the amplitudes such that useful information can be read out with high confi-
dence without many measurements.

The interest in quantum computing for quantum simulations of molecules
and materials stems from the fact that in many cases, the chemistry and physics
of molecules and materials is best described using quantum mechanics. Thus,
the state of a many-particle molecule also encodes quantum information, and
as the number of atoms increases, similarly can require an exponentially large
number of classical bits to describe. This means that in the worst case, quantum
simulation is exponentially hard on classical computers. This is the motivation
for Feynman’s famous observation that “Nature isn’t classical, dammit, and
if you want to make a simulation of nature, you’d better make it quantum
mechanical” [2].

A moment’s reflection, however, suggests that the potential quantum ad-
vantage for a quantum computer in quantum simulation is nonetheless sub-
tle. For example, if it were indeed impossible to say anything about how
atoms, molecules, or materials behave, without using a quantum computer,
there would be no disciplines of chemistry, condensed matter physics, or ma-
terials science! Decades of electronic structure and quantum chemistry sim-
ulations suggest that reasonable, and in some cases very high accuracy, solu-
tions of quantum mechanics can be obtained by classical algorithms in practice.
Quantum advantage in quantum simulation is thus problem-specific, and must
be tied both to the types of questions that are studied, as well as the accuracy
required.

We can look to theoretical quantum computer science to better understand
the power of quantum computers in quantum simulation. The natural problem
to solve on a quantum computer is the time evolution of a quantum system
given some initial state,

Quantum dynamics: i0,|U(t)) = H|¥(t)). (1.1)

This problem is representative for the complexity class BQP, i.e. it is of polyno-
mial cost on a quantum computer and believed to offer a clear separation from
the classical case (an exponential quantum speedup has been rigorously proven
only in the query complexity setting [ 10]). However, it is necessary to prepare
the initial state, which may be difficult by itself. In particular, preparing a low-
energy state may be challenging, which naturally leads to considering other
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Quantum system

16(0)) = [o(1))

A

Quantum simulator
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IY(0)) == (1))
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Preparation Measurement

Figure 1.1: Schematic of a quantum simulation of quantum dynamics. A
quantum simulator (bottom) is prepared in an initial state [¢)(0)),
that is a representation of the initial state |¢(0)) of the actual sys-
tem of interest (top). The simulator is manipulated by a unitary
transformation U/’ that is an encoding of the real-time evolution
of the system of interest, and the final simulator state |¢(t)) is
measured, yielding information about the dynamics of the origi-
nal system. From [9].

important problems,

Ground state: H|U,) = Eo|U,); E, = (U|H|W) (1.2)

in
|¥)
ﬂ[ﬁe‘ﬁﬁ}

Tr [e*ﬁﬁ] 13)

Thermal averages: (A) =

Ground state determination lies in complexity class QMA [6], a class of prob-
lems not known to be efficiently solvable (in general) on a quantum computer.
This also means that thermal averages cannot in general be computed effi-
ciently on a quantum computer, since in the limit of zero temperature, this
problem reduces to ground-state determination. Although it is the case that
there are many physical ground state and thermal problems that are not so
hard to solve in practice (as demonstrated by efficient classical simulation of
many problems) and similarly many initial states of interest in quantum dy-
namics that are easy to prepare, the above tells us that in a rigorous sense,
we do not have a straightforward theoretical guarantee that a quantum com-
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putational advantage can be naturally achieved for the central problems in
quantum simulation.

Given the limits to the guidance that can be provided by rigorous compu-
tational complexity results, it is clear that to understand quantum advantage
in chemistry, condensed matter physics, and quantum materials science, we
must be guided by actual empirical data in the form of numerical and theoreti-
cal experiments with quantum algorithms and quantum devices on simulation
problems of interest. This requires making progress on both theoretical and
practical questions of quantum simulations, ranging from the basic algorithms
and choices of encoding and representation to issues of circuit compilation,
readout, and mapping to specialized hardware. A central purpose of this re-
port is to provide a community perspective on what the relevant chemical and
materials problems are today; to give a snapshot of the limitations of classical
methods for these problems; and in these contexts to understand the strengths,
weaknesses, and bottlenecks of existing ideas for quantum algorithms, and
where they need to be improved, both in terms of fundamental theoretical as-
pects as well as practical methods of implementation.

1.2.1 Current quantum architectures

The idea of using a quantum mechanical device to perform a computation
was first considered in earnest by Richard P. Feynman in a famous lecture
in 1982 [2]. His suggestion was to build a lattice of spins with tunable inter-
actions. He conjectured that by appropriately tuning these interactions, such
a system could be made to imitate the behavior of any other (bosonic) quan-
tum system with the same dimensionality, and thus could serve as a way to
compute the properties of some other system that one would like to study.
This idea, which is often referred to as analog quantum computation, is
still very much alive today and embodied in the field of cold atomic gases and
related techniques, which have made great progress in simulating complicated
physics of strongly correlated systems in a controlled environment. A general
schematic of the idea is shown in Fig. 1.1.

However, such systems come with some limitations: for example, it appears
unlikely that a system of spins can naturally emulate a system of fermions, or
that a two-dimensional array of spins could emulate a three-dimensional ma-
terial; in other words, a given analog quantum computer can only simulate a
certain set of physical systems. Furthermore, it is itself an experiment with
limited accuracy; while it may be easier to perform than experiments on the
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original system of interest, the accuracy nonetheless remains limited. A more
general approach, which is the focus of this report, is digital quantum com-
putation. Here, very much in analogy to the classical computers we are used
to, one considers a system of quantum registers — qubits — that are controlled
through some set of instructions - the quantum gate operations. One can show
that with a finite (and indeed relatively small) set of such gate operations, one
can in principle generate arbitrary quantum evolution to arbitrary precision!
In other words, every problem in the complexity class BQP can be mapped
into a quantum program, i.e. the quantum circuit composed of such gates.

A third model of quantum computation is adiabatic quantum computa-
tion. Here, the computation is encoded into a time-dependent Hamiltonian,
and the system is evolved slowly to track the instantaneous ground state of this
Hamiltonian. It can be shown that this model is equivalent to circuit-based dig-
ital quantum computation [11], but it is usually considered to be less practical.
However, a restricted version of it, adiabatic quantum optimization [12], has
gained some popularity. Here, a classical optimization problem is encoded into
a quantum Hamiltonian, to which one adds some non-commuting terms to en-
dow the system with non-trivial quantum dynamics. If one then slowly turns
off the quantum terms, the optimal solution to the classical problem should be
obtained. In practice, however, one may have to go impractically slowly for
this to be true; the detailed analysis of this approach is a complex problem that
is not covered in this report.

1.2.2 Building a circuit-based digital quantum computer

Returning to circuit-based quantum simulation, what is the status of the field
today? The natural enemy of quantum computation is decoherence of the
qubit, i.e. the tendency of the stored quantum state to decay into a classi-
cal state. After decades of research, a number of qubit technologies [13, 14],
for example superconducting qubits [15] and ion traps [16], have reached the
point where small devices of a few dozen qubits can be sufficiently isolated
from decoherence to execute non-trivial quantum algorithms of a few tens
to hundreds of gates. This has been termed the noisy intermediate-scale
quantum (NISQ) era [17]. With these devices, the first demonstrations of
quantum supremacy appear to be on the horizon. For this, an artificial but
well-defined problem that is intractable classically is solved on a quantum com-
puter. However, these problems do not generally have practical relevance, and
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a more important and challenging question is when a scientifically or commer-
cially relevant problem can be solved on a quantum computer.

To address large-scale problems, it is necessary to correct errors that occur
on physical qubits during the computation. While the no-cloning theorem pre-
vents error correction by simple redundancy, it can be shown that quantum
error correction is possible nonetheless by encoding a single qubit into an en-
tangled state of many qubits [19], to use suitable measurement to detect errors
occurring in the system and to apply suitable unitary transformations correct-
ing such errors without disturbing the information encoded in the system (see
Fig. 1.2). This leads to the very important distinction between physical and
logical qubits. The latter are error-corrected and encoded in the state of many
physical qubits. Quantum algorithms are performed on the logical qubits, and
the error-correction scheme translates the operations on logical qubits into
physical operations. This incurs significant overhead: depending on the error
rate of the underlying physical qubits and the target error rate of the logical
qubits, one may need hundreds or even thousands of physical qubits to real-
ize a single logical qubit. Therefore, when evaluating the capabilities of some
qubit platform with respect to an algorithm, one must be careful to include
the cost of encoding logical qubits into physical qubits to achieve the required
error rates.

1.3 Broader issues

Progress in quantum algorithms for quantum simulation requires training a
scientific workforce. Quantum simulation research is, by its very nature, an
interdisciplinary field. To carry out research in this discipline requires under-
standing quantum algorithms as well as chemistry and materials science. What
should be the mechanism to educate such a workforce? How do we ensure
best practices in hiring? How do we ensure collaboration between academic
software and theory efforts and industry hardware and software groups? An
important component of the workshop was also to discuss these issues and
provide community feedback from both academia and industry on the desired
best practices for new collaborations, workforce training, and engaging the
scientific and broader population as a whole. We return to these questions in
Sec. 5.
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Figure 1.2: Examples of error correction schemes. (a) Quantum circuit im-

plementing the bit-flip code. The state of a single logical qubit,
|t)) = «|0) + B]1) is encoded in the state of three physical qubits
as «|000) + [|111). The system is then sent through a channel
By = £%3, where £ flips a qubit with probability p (X error).
Measuring the Z operator on the last two qubits permits to de-
termine whether a qubit has been flipped by the channel, and to
correct such an error without corrupting the transmitted state. (b)
Schematic of the surface code for quantum error correction and
quantum fault-tolerance. Top: a two-dimensional array imple-
mentation of the surface code, data qubits are open circles and
measurement qubits are filled circles, with measure-Z qubits col-
ored green (dark) and measure-X qubits colored orange (light).
Middle: sequence of operations (left), and quantum circuit (right)
for one surface code cycle for a measure-Z qubit, to detect sign flip
errors. Bottom: similar, but for measure-X qubits. From [18].



2 Simulation challenges in
molecular and materials science

In this section we describe a representative, but certainly non-exhaustive,
set of scientific problems of relevance to quantum simulation.

2.1 Quantum chemistry

Quantum chemistry is concerned with determining the low-lying eigenstates
of the electronic Hamiltonian of a molecule. The eigenstates are determined for
fixed sets of nuclear positions, i.e. within the Born-Oppenheimer approxima-
tion. Determining the main features of the resulting potential energy surface,
i.e. the electronic energy as a function of nuclear positions, its minima and sad-
dle points, is key to understanding chemical reactivity, product distributions,
and reaction rates.

There exists a wide range of quantum chemical methods with different
accuracy and speed tradeoffs, ranging from density functional methods that
routinely treat thousands of atoms or more [20], to high-level many-electron
wavefunction methods, such as coupled cluster theory, that can attain chem-
ical accuracy of 1 kcal/mol and better, on systems of tens of atoms [21, 22].
However, most methods in quantum chemistry are most accurate for problems
where there is a dominant electronic configuration, a subset of the quantum
chemistry problem known as the single-reference problem. Single-reference
quantum chemistry is found in the ground-states of many simple molecules
(e.g. hydrocarbons), but in many molecular excited states, at stretched bond
geometries, and in transition metal chemistry, multiple electronic configura-
tions can come into play, which is referred to as multi-reference quantum
chemistry. Despite much work (and progress) in extending quantum chem-
istry to multi-reference situations, the attainable accuracy in molecules with
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active orbitals

222222 ipANRNRIN
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single-reference multi-reference

Figure 2.1: Single-reference (left) and multi-reference (right) wavefunctions.
The former is qualitatively described by a single Slater determi-
nant, the latter by a linear combination of a potentially large num-
ber of Slater determinants. Often such determinants correspond
to different configurations of electrons in an “active space” of or-
bitals.

more than a few atoms is significantly lower than in the single-reference case.
Some examples of multi-reference quantum chemical problems include:

o The chemistry of enzyme active sites. Such active sites can involve
multiple coupled transition metals, famous examples being the 4 man-
ganese ions in the oxygen evolving complex [25], or the 8 transition
metals in the iron-sulfur clusters of nitrogenase [26], shown in Fig. 2.2.
They pose some of the most complicated multi-reference quantum chem-
istry problems in the biological world. Combined theoretical and exper-
imental studies, primarily at the level of density functional theory, have
proven successful in unravelling many structural and electronic features
of such enzyme active sites [27, 28, 29]. However, a detailed understand-
ing of the interplay between spin-coupling and delocalization between
metals, which requires true multi-reference quantum chemistry and is
needed to interpret aspects of experimental spectroscopy, remains in its
infancy [30, 24, 23, 23, 31, 32].

+ Transition metal nanocatalysts and surface catalysts. Similarly to
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Figure 2.2: Left: Iron-sulfur clusters associated with different oxidation states

(PN, Syn (a synthetic model of PN), P1* and P*) of the P cluster
of the nitrogenase enzyme, from [23]. Right: Mn,Ca core of the
oxygen evolving complex of photosystem II, from [24].

enzyme active sites, simulating the mechanism of action of synthetic
heterogeneous catalysts remains a major challenge. While density func-
tional theory has been widely employed, predictions of even basic quan-
tities such as the adsorption energy of small molecules are unreliable [33,
34]. While not all such problems are expected to be multi-reference in
character, even the single-reference modeling of such chemistry, at a
level significantly beyond density functional theory, is currently chal-
lenging or impossible. In addition, multi-reference effects are expected
to play a role in certain catalysts, such as transition metal oxides, or at
intermediate geometries in reaction pathways [35, 33, 36, 37].

Light harvesting and the vision process. The photochemistry of con-
jugated organic molecules is the means by which Nature interacts with
light. Some prominent examples of such natural conjugated systems in-
clude the carotenoid and chlorophyll pigments in the light-harvesting
complex of plants [38, 39], as well as the rhodopsin system associated
with vision [40, 41]. While describing the interaction with light is not
purely a question of electronic structure, as it involves the quantum dy-
namical evolution of quantum states, the quantum chemical questions
revolve around the potential energy surfaces of the ground- and excited-
states, and the influence of the environment on the spectrum [42]. These
questions are currently challenging due to the size of the systems in-
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volved as well as the varying degree of single- and multi-reference char-
acter in many of the conjugated excited states [43, 44, 45].

The basic quantum simulation problem is the ground-state (or low-energy
eigenstate) problem for the electronic Hamiltonians, and the basic metric is
whether ground-state or low-energy eigenstate quantum algorithms yield more
accurate energies (for comparable computational resources) than the best clas-
sical algorithms, for the problem sizes of interest. Proof-of-principle demon-
strations could be carried out in simplified models of the above problems (e.g.
in small active spaces of orbitals). However, to make real progress, one should
also consider more quantitative models, which requires treating a large num-
ber of electrons in a large number of orbitals; at minimum, tens of electrons
in hundreds of orbitals. This poses new challenges for ground-state algo-
rithms, and raises questions of how best to represent and encode the resulting
Hamiltonians and states. In addition, there are many aspects of the chemical
problems beyond the modeling of the electronic wavefunctions, for example,
to treat environmental, solvent, and dynamical effects [46]. These will re-
quire interfacing the quantum simulation with other classical simulation meth-
ods. Finally, although the above examples have focused on multireference and
strongly correlated quantum chemistry, weakly correlated chemistry itself be-
comes hard to model classically when the number of degrees of freedom is very
large [47]. These may also be interesting to target with quantum algorithms
when sufficiently large quantum machines are available.

2.2 Quantum molecular spectroscopy

High-resolution gas-phase rovibrational spectroscopy provides an extremely
precise experimental probe of molecular structure [48]. Such spectroscopy is
important not only for the fundamental understanding of small molecules and
the quantum control of atomic and molecular states, but also to provide insight
into the basic chemical processes and species involved, for example, in atmo-
spheric chemistry [49] and in astrochemistry [50]. In larger molecules, with
more than a few atoms, even the low-energy rovibrational spectrum contains
many peaks which cannot be interpreted without theoretical simulation [51].
The theoretical goal is to compute the eigenstates of the nuclear Schrodinger
equation [52]. However, unlike the electronic structure problem, there are
several challenges even in setting up the best form of the nuclear Schrodinger
equation to solve. The first is that the nuclear Hamiltonian (in particular, the
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Figure 2.3: Dominant families of configurations of fluxional CH; . From [60].

nuclear-nuclear interactions) are not known a priori because the interactions
are mediated by the electrons. This nuclear potential energy term must instead
be determined from quantum chemical calculations at fixed nuclear geometries
and then fitted to an appropriate functional form; this requires a large number
of high accuracy quantum chemistry calculations. The second is that nuclear
ro-vibrational motion is often far from harmonic and not well approximated by
simple mean-field theories, unlike many electronic structure problems. Thus
there is a need for a proper choice of curvilinear nuclear coordinates that de-
creases coupling in the nuclear potential energy (e.g. in a harmonic system,
normal modes are such a choice of coordinates) while retaining a simple form
for the kinetic energy operator, and which also exposes the symmetry of the
molecular system.

Once the nuclear Schrédinger equation has been properly formulated, one
then faces the problem of representing the eigenstates. While methods such as
diffusion Monte Carlo have made progress on vibrational ground-states [53],
spectroscopy involves transitions to excited states. In this setting, tensor fac-
torization [54, 55] and other approaches [56, 57] have been explored to ap-
proximate the rovibrational wavefunctions [58]. However, the high dimen-
sionality and spectral congestion, requiring resolution between peaks on the
scale of 1 wavenumber, proves extremely challenging [59, 55]. Some famous
examples include:

« Spectra of floppy molecules. Floppy molecules are by their nature very
anharmonic and thus far from a simple vibrational description. CH7 is
a prototypical floppy molecule (see Fig. 2.3): the five hydrogen atoms
move around the central carbon and the molecule has almost no struc-
ture in the traditional sense [61, 62, 63, 64, 55].

« Hydrogen bonded clusters. Another vibrational problem with large an-
harmonicity is found in hydrogen bonded clusters, such as in the spec-



22

2 Simulation challenges in
molecular and materials science

troscopy of water molecules and protonated water clusters [65, 66]. The
hydrogen bond network is fluid and even small clusters can transition
between many different minima on the potential energy surface [67].
Resolving the peaks and tunnelling splittings is important for interpret-
ing water spectra in the atmosphere, as well as in understanding reac-
tion mechanisms in water. Further, the spectroscopy of molecules with
intermolecular hydrogen bonds, such as the malonaldehyde molecule,
has also posed long-standing challenges for the field [68, 69, 70, 71].

From a quantum algorithms perspective, although there are similarities with
the quantum chemistry problem (in particular one is interested in low-energy
eigenstates), there are significant differences. One important difference is that
the Hamiltonian is no longer of simple two-particle form due to the effective
nuclear-nuclear interaction and typically includes important three- and four-
mode terms. Also, one is often interested in an order of magnitude more states
(e.g. hundreds of excited states) than in the electronic structure problem. All
these features are sufficiently distinct from the usual quantum chemical sce-
narios that quantum algorithms are likely to require additional innovation to
be useful in the nuclear problem. Some steps in this direction have recently ap-
peared [72, 73, 48]. One simplification is that many nuclei are distinguishable
avoiding the need to consider indistinguishable particles. The lack of a good
mean-field starting point together with the various technical complications
means that one can find relatively small systems (in terms of the Hilbert space
size) where classical methods already have trouble; for example, a minimal
quantum model of the CHZ molecule can be formulated as a 12 dimensional
problem with 10 basis functions per mode [64].

2.3 Chemical quantum dynamics

Chemical quantum dynamics is another important target for quantum simu-
lation [74]. This field is concerned with modeling time-dependent electronic
and nuclear quantum effects in molecules (as distinct from computing the time-
independent electronic or nuclear eigenstates in quantum chemistry and quan-
tum molecular spectroscopy). Quantum molecular dynamics is primarily
concerned with the nuclear motion and describes the rates of chemical pro-
cesses as well as the dynamical interaction of molecules with light, as involved
in spectroscopy and quantum control. However, with the development of short
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X-ray pulses direct experimental access to electron dynamics in molecules is
now also available.

Currently these dynamical simulations are challenging. For example, nu-
clear motion is poorly described by mean-field theory and the classical limit is
often a better starting point, but offers no zeroth order description of quantum
effects. Thus classical simulations of quantum dynamics either invoke methods
based on the classical limit that scale to large systems but which are difficult
to systematically improve (such as approximate path integral methods [75],
[76]), or methods which model the wave-function dynamics or the path inte-
gral accurately for a small number of degrees of freedom, but which are not
scalable due to dimensionality or the dynamical sign problem [77, 78].

A subfield of quantum molecular dynamics, but one of important chemi-
cal interest, is the description of non-adiabatic quantum effects [74, 79].
At nuclear configurations where different electronic surfaces approach each
other, the Born-Oppenheimer approximation can break down and the quan-
tum behavior of the nuclei, coupled indirectly via the electrons, is enhanced.
The associated quantum non-adiabatic effects govern non-radiative energy re-
laxation via the crossing of electronic surfaces (so-called conical intersections)
and are thus central in describing energy transfer. The faithful description of
non-adiabatic quantum effects requires the simultaneous treatment of quan-
tum electrons and quantum nuclei. The complexity of this problem together
with the often large system sizes where non-adiabatic effects are of interest
means that current classical methods rely on simple heuristic approximations,
such as surface hopping [80], for which a rigorous quantum formulation is
lacking. Examples of relevant chemical problems in the area of chemical quan-
tum dynamics include:

« Proton coupled electron transfer (PCET) [81]. PCET is known to be
an important mechanism in catalysis and energy storage: electrons are
transferred at lower overpotentials when thermodynamically coupled
to proton transfer. Examples range from homogeneous catalysts [82,
83, 84, 85] and heterogeneous electrocatalysts [86, 87] to enzymes that
perform PCET, including soybean lipoxygenase (that catalyzes the oxi-
dation of unsaturated fatty acids) [88], photosystem II (in the tyrosine
oxidation step) [89, 90] and the redox-leveling mechanism of catalytic
water oxidation [87]. While semiclassical predictions are often good
enough for describing electron transfer, the quantum nature of molec-
ular dynamics is paramount with PCET because of the quantum nature
of the proton[88, 91] as evidenced in kinetic isotope effects (referring to
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the ratio of the proton to deuteron reaction rates) which can be larger
than 80 [88] As such, classical mechanics is not sufficient, and quantum
simulations of PCET would be extremely helpful for making predictions
in large (especially biological) systems.

Vibrational dynamics in complex environments. For many systems
of interest, vibrational spectroscopy is the key tool available for char-
acterization. There is overlap with the problems in section 2.2 but the
questions here focus on larger scale systems and condensed phase prob-
lems, where the line-shapes as well as frequencies are important, and
the system size limits the use of fully quantum formalisms. From the
librations of water to the high frequency motion of C-H bonds, it would
appear that all of physical chemistry uses nuclear vibrational frequencies
to characterize complex systems; for instance, it is routine nowadays to
use Stark shifts of reporter molecules with large vibrational frequencies
to characterize electric fields either within biological enzymes [92] or at
electrochemical interfaces [93, 83]. Nevertheless, because of computa-
tional limitations, the standard approach today for modeling vibrational
dynamics in large complex environments is to invoke a very old flavor
of theory: Kubo theory [94]. One focuses on energy gaps and uses a
semiclassical expansion of the line-shape. Obviously, this approach re-
lies on diagonalization of the quantum subsystem and as such is limited
to systems with only a few quantum states of interest; more generally,
for systems with many interacting quantum states — for instance, H/J
molecular aggregates [95] — one can calculate vibrational states only by
brute force, which is severely limiting.

Plasmonic chemistry. One of the most exciting areas today in physical
chemistry is the possibility of using metal particles (with large cross sec-
tions) as a tool to absorb light and, with the resulting plasmonic excita-
tions, initiate “plasmonic chemistry”. Already, there are a few examples
in the literature of hot plasmonic chemistry, including the dissociation of
hydrogen molecules [96]. To better understand this arena, however, one
of the key questions is: how do we characterize plasmonic excitations?
While classical descriptions of plasmons are easy to obtain, quantum de-
scriptions are necessary if we are going to model quantum processes, e.g.
electron transfer. And yet, by definition, plasmonic excitations are cor-
related excitations, where many electrons push against each other and
force a collective motion of the electron cloud of the particle. Thus, per-
haps not surprisingly, characterizing plasmons fully quantum mechani-
cally has proven to be extremely difficult.



2.4 Correlated electronic structure in materials

25

300 -
T*
W0 Strange metal
= 200 11 rFseuaogap
g
é TSC‘onsel
2 = C.onset » =~ s
E Il \\\
@
= Charge T.
100 = order :
Spin -
_ order LA
AF :
.-i \‘Ts,m 4 “-GU_W .
\‘-.~ ¢ Y Fermi
Tsow R 'Il H" as liquid
: P S ATHLIDELLEN RS |
0 KX 0.2
pmln pc1 pc2 pmax
Hole doping, p

Figure 2.4: Qualitative phase diagram of cuprate high-temperature supercon-
ductors, which has challenged theory and simulation in condensed
matter for decades. Figure adapted from Ref. [98].

While quantum dynamics is in principle an ideal simulation problem for a
quantum computer, the quantum simulation of quantum molecular dynamics
entails several practical challenges. Much of this may be viewed as an issue
of representation. As in the problem of quantum molecular spectroscopy, the
nuclear quantum Hamiltonian contains complicated interactions which must
be tabulated or calculated on the fly [97]. In addition to this, the dynamical
quantum state involves near continuum degrees of freedom, posing a chal-
lenge for the standard discretizations of Hilbert space considered in quantum
algorithms. Finally, typical spectroscopic observables may be accessible to rel-
atively simple treatments, not requiring the full fidelity of the quantum wave-
function evolution. These technical issues mean that implementing quantum
molecular dynamics with a quantum advantage is likely to remain challeng-
ing in practice, despite the favorable theoretical complexity on a quantum de-
vice.
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2.4 Correlated electronic structure in materials

The goal of electronic structure calculations in materials is to determine their
low-energy properties. There is some overlap in methods and ideas between
the materials electronic structure problem and the problem of quantum chem-
istry. When electron-electron interactions are weak, the low energy material
properties can normally be described by computing the band structure using
density-functional theory and one of the many popular density functionals,
such as the local density approximation (LDA) or generalized gradient approxi-
mations (GGA). However, in some materials, commonly referred to as strongly
correlated, the electron-electron interactions fundamentally alter the behav-
ior and such an effective non-interacting description is no longer appropriate.
A paradigmatic example are Mott insulators, which appear as conductors in
band structure theory but in fact become insulating due to electron-electron
interactions. While the mechanism behind the insulating behavior of Mott in-
sulators is well-understood, for many other phenomena in strongly correlated
systems the underlying microscopic mechanism is not fully known, let alone
a quantitative and predictive theory of the associated physics with material
specificity. Some famous examples of such problems include:

« Originally discovered in 1986, high-temperature superconductivity
has eluded a complete theoretical explanation to date. The experimental
phase diagram, which is sketched in Fig. 2.4, is accurately characterized
experimentally across several materials. While the general properties
of the superconducting phase itself are relatively well characterized, the
mechanism driving superconductivity is not yet fully elucidated. Also,
two nearby regimes, the pseudogap and strange metal phase, continue
to puzzle theorists [98]. In both cases, their nature as well as their precise
relation to the superconducting phase are not understood. The strange
metal phase (also known as non-Fermi liquid) exhibits behavior incon-
sistent with a simple weakly interacting metal even at high energies, and
has motivated a whole area of research on exotic metallic systems [99].
Meanwhile, the pseudogap phase exhibits several competing ordering
tendencies [100], which are extremely challenging to resolve in numer-
ical methods because most methods naturally favor a particular ordering
pattern, thus making it challenging to disentangle physical effects from
method biases.

+ The non-Fermi liquid behavior exemplified in the strange-metal phase
of cuprates appears also in other classes of materials, such as heavy
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fermion compounds and fermionic systems near criticality [101,
102]. In general, these systems are amenable to classical simulation
only at special points where quantum Monte Carlo methods do not suffer
from the infamous sign problem [103].

« Since quantum fluctuations are enhanced in lower dimensions, two di-
mensional systems have long been of central interest in strongly corre-
lated physics. Many material systems realize effectively two-dimensional
physics, including two-dimensional electron gases in semiconductor het-
erostructures, where the integer and fractional quantum Hall effect
were first discovered [104], layered materials (including cuprate high
temperature superconductors), graphene [ 105 ] and transition-metal dichalco-
genides (TMDs). More recently, it has been found that so-called Moiré
materials exhibit rich phase diagrams due to strong interactions, in-
cluding exotic superconductivity [106] and exotic topologically non-
trivial phases. A paradigmatic example is twisted bilayer graphene [107],
which consists of two graphene layers that are slightly twisted with re-
spect to each other. This leads to a Moiré pattern with a very large unit
cell, which effectively quenches the kinetic energy (i.e., leads to almost
flat bands) and drastically enhances the effect of Coulomb interaction.

Frustrated spin systems have long been an important topic especially
for numerical simulations in condensed-matter physics. These systems
potentially realize a host of high non-trivial phases, in particular topo-
logical and gapless spin liquids [108]. They have historically been the
testbed for computational methods such as tensor networks and varia-
tional methods. As such, they appear as good test cases also for quantum
simulations. Furthermore, recent developments in particular in materi-
als with strong spin-orbit coupling have opened the door on a variety of
new materials that may exhibit exotic topological phases, and in partic-
ular realize a non-Abelian spin liquid [109, 110].

While many methods have been developed to accurately include electron-
electron interactions, their scope generally remains limited. For example, ten-
sor network methods have revolutionized the study of one- and to a limited
extent two-dimensional effective models for magnets and itinerant fermions.
However, these methods so far have not been successfully applied to more re-
alistic models, and in particular in three dimensions. On the other hand, quan-
tum embedding methods such as the dynamical mean-field theory (DMFT) and
its many cousins can capture interaction effects in three-dimensional systems,
including multi-band systems. However, they require some approximations to
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Figure 2.5: [llustration of pump-probe spectroscopy using X-ray probes. Fig-
ure adapted from Ref. [111].

the correlations of the state; for example, in its simplest form, DMFT disregards
momentum dependence of the electron self-energy. While many improved
variants of these embedding methods exist, their accuracy is often difficult
to control, and so far they have not been applied to realistic models without
further approximations. Finally, quantum Monte Carlo methods have been
extremely successful for bosonic systems and unfrustrated spin systems, but
the sign problem hinders their application to frustrated or fermionic systems
(away from special points) without other uncontrolled approximations.

From the perspective of quantum algorithms, the materials electronic struc-
ture problem is both simpler and more difficult than the quantum chemistry
problem. Some ways in which it is simpler include the fact that often very sim-
ple Hamiltonians describe the main physics, as well as the potential presence
of translational invariance. A major way in which it is more complicated is
the fact that one needs to treat systems approaching the thermodynamic limit,
which involves a very large number of degrees of freedom. This not only
increases the number of qubits required but also heavily impacts the circuit
depth of algorithms, such as state preparation. The thermodynamic limit can
also lead to small energy scales for excitations and energy differences between
competing phases. For these reasons, it remains to be understood whether the
quantum algorithms of relevance to quantum chemistry are those of relevance
to materials electronic structure.
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2.5 Dynamical quantum effects in materials

Many experiments on condensed-matter systems do not probe the equilibrium
properties of the system, but rather dynamical properties. For example, the
main workhorse of mesoscopic quantum physics is electron transport, i.e.
the response of the system when it is coupled to electron reservoirs and a volt-
age is applied [112]. Likewise, material properties are often probed through
scattering experiments, such as neutron scattering or angle-resolved photoe-
mission spectroscopy (ARPES) [113], which probe dynamical properties such
as the structure factor or spectral function. Going beyond spectral properties,
the non-equilibrium real-time dynamics of quantum systems have increas-
ingly come into focus, both because of experiments that can probe quantum
dynamics at atomic scales and because of fundamental interest in equilibration
of quantum systems. Experimental setups that can probe ultra-fast dynamics
in materials include, for example, free-electron lasers [114, 115] as well as
other pulsed laser systems. These allow the application of experimental tech-
niques, such as pump-probe spectroscopy [ 116, 111], to provide novel insights
into the behavior of correlated quantum systems.

On the other hand, cold atomic gases [117] provide a highly controllable
environment that allows systematic exploration of quantum dynamics even in
the strongly interacting regime [118], see Fig. 2.6. A key advantage is that one
can engineer the evolution of the system to closely follow a target model; this
approach is also referred to as analog quantum simulation (see also Sec. 1.2.1).
However, classical simulation still plays a crucial role in establishing the accu-
racy of cold atom setups.

From a conceptual point of view, a central question has become the connec-
tion between statistical mechanics and the dynamics of closed quantum
systems. The general goal is to put quantum statistical mechanics on a solid
conceptual foundation as well as understanding the cases where it does not
apply, such as many-body localized systems [120, 121, 122].

Numerically simulating all these systems has been a severe challenge. While
many approaches to quantum dynamics exist, none are universally applicable.
At short times, tensor-network methods can accurately describe the dynam-
ics. However, in general the computational cost grows exponentially with the
desired simulation time, thus severely limiting the timescales that can be re-
solved [123]. Conversely, at long times, the system is often effectively de-
scribed by classical dynamics controlled by conservation laws. However, the
interesting strongly correlated behavior is generally exhibited at intermediate
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Figure 2.6: Cold atomic gases are controllable quantum systems that can be
arranged in a lattice (a). They can be tuned to provide analog sim-
ulators of real crystal potentials (b). From Ref. [119].

times, inaccessible to the established classical methods. Quantum Monte Carlo
methods can scale exponentially in time even for unfrustrated systems. Non-
equilibrium dynamical mean-field theory [124] has emerged as a powerful
method especially for systems in high dimensions, but requires uncontrolled
approximations (both in the setup of the method and its numerical solution).
Finally, in the regime of weak interactions, time-dependent density functional
theory can be used, but likewise implies uncontrolled approximations [ 125].



3 Challenges for quantum
algorithms in quantum
simulation

3.1 Overview of algorithms

In the introduction we described three quantum problems that lie at the heart
of chemistry and materials physics: the problem of quantum dynamics, rep-
resentative of computational tasks that can be efficiently tackled by a quantum
computer, aside from the initial state preparation; quantum ground- and
low-energy state determination, central to quantum chemistry, condensed
phase electronic structure, and quantum molecular spectroscopy; and thermal
averages or quantum statistical mechanics, to describe finite-temperature
chemistry and physics. In next sections, we survey the current status and the-
oretical and practical challenges to implement quantum algorithms for these
problems, and some future directions.

Regardless of the problem we are studying, the first step in a quantum sim-
ulation is to choose a representation for the Hamiltonian and the states. Thus,
in Sec. 3.2 we first examine the possibilities for different qubit representations,
and open questions in that area.

Quantum ground-state algorithms fall into several classes. Quantum phase
estimation is a direct route to (near exact) eigenstate determination, but has
been challenging to implement in the near-term era. A complementary tech-
nique is to prepare the exact ground-state via a prescribed “exact” evolution
path, either in real time (adiabatic state preparation), or in imaginary time
(quantum imaginary time evolution). On the other hand, variational
quantum algorithms provide the possibility to introduce approximations
with adjustable circuit depth, which are determined via a non-linear optimiza-
tion, usually implemented in a hybrid-quantum classical loop. The variety
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of algorithms currently explored for quantum ground- (and low-lying excited
state) determination are discussed in Sec. 3.3.

While polynomial time algorithms for quantum time evolution have been
known for some time, algorithms with optimal asymptotic complexity (linear
in time) as well as favorable scaling with error and low prefactors, remain an
area of active research. Also, much work remains to be done to optimize Hamil-
tonian simulation algorithms for the Hamiltonians of interest in chemistry and
materials science. Quantum time evolution is a fundamental building block in
many quantum algorithms, such as phase estimation. The current status of
quantum time evolution algorithms is summarized in Sec. 3.5.

How best to simulate thermal states in chemical and materials science appli-
cations remains an open question. A wide variety of techniques have been dis-
cussed, ranging from eigenstate thermalization, to state preparation methods,
to hybrid quantum-classical algorithms, though few have been implemented.
The current status of thermal state methods, the prospects for implementing
them, and other open questions are discussed in Sec. 3.6.

Many quantum algorithms involve interfacing with classical data and clas-
sical algorithms. This can be to take advantage of classical optimization strate-
gies, as in variational quantum algorithms. Another reason is to enable a multi-
level/multi-scale representation of the problem. Quantum embedding provides
a framework for such multi-scale quantum/classical hybrids, with the quantum
representation of a subsystem coupled either to a classical environment, or an-
other quantum representation via the exchange of classical data. We discuss
the current status of hybrid quantum-classical algorithms and quantum
embedding in particular in Sec. 3.7.

Finally, an important consideration when developing improved quantum
algorithms for real chemical and materials science problems is to establish
benchmark systems and results, from the best available classical simula-
tion data. The possibilities and prospects for such benchmarks are discussed
in Sec. 3.8.

3.2 Qubit representation of many-body systems

Many-body systems in chemistry and materials physics are composed of inter-
acting electrons and atomic nuclei. An exact quantum mechanical treatment
involves continuous variables such as the particles’ positions and momenta.
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To simulate such systems on a digital computer (either quantum or classical),
the infinite-dimensional Hilbert space of a many-body system has to be trun-
cated.

The most direct route is to define a finite set of basis functions and then
to project the exact many-body Hamiltonian onto the chosen basis. The re-
sulting discretized system is then expressed in terms of qubits. Depending on
the problem, the Hamiltonian of interest may be different, e.g. in electronic
structure it is the electronic Hamiltonian, while in molecular vibrational prob-
lems, it is the nuclear Hamiltonian. Alternatively, one can write down a simple
form of the Hamiltonian a priori that contains the main interactions (a model
Hamiltonian) with adjustable parameters. This latter approach is particularly
popular in condensed matter applications. Finally, depending on the particles
involved it may also be necessary to account for their fermionic or bosonic
nature, in which case a suitable encoding of the statistics is required.

A choice of a good representation is important as it may affect the simula-
tion cost dramatically. In this section we briefly summarize known methods for
the qubit representation of many-body systems, discuss their relative merits,
and outline important directions for future research.

3.2.1 Ab initio electronic structure qubit representations

The main objective of electronic structure in chemistry and physics to under-
stand the low-energy properties of the electronic structure Hamiltonian that
describes a system of interacting electrons moving in the potential created by
atomic nuclei [126, 127],

1

K
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Here K is the number of electrons, r; is the position operator of the ¢-th elec-
tron, A; is the corresponding Laplacian, and V' (r) is the electric potential cre-
ated by atomic nuclei at a point . The term H, includes the kinetic and the
potential energy of non-interacting electrons while [, represents the Coulomb
repulsion. Here we ignore relativistic effects and employ the standard Born-
Oppenheimer approximation to solve the electronic Hamiltonian for fixed nu-
clei positions.
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Each electron is described quantum mechanically by its position r; € R?
and spinw; € {1, ]}. Accordingly, a quantum state of K electrons can be spec-
ified by a wave function V(z1, ..., zx), where x; = (r;,w;). The wave func-
tion must obey Fermi statistics, that is, U(z1, . . ., T ) must be anti-symmetric
under exchanging any pair of coordinates x; and z;.

The first step of any quantum electronic structure simulation algorithm is
to approximate the electronic Hamiltonian 7/ with a simpler simulator Hamil-
tonian that describes a system of interacting qubits. This is usually achieved
by truncating the Hilbert space of a single electron to a finite set of basis func-
tions 11, ..., ¥y known as (spin) orbitals. For example, each orbital could be
a linear combination of atom-centered Gaussian functions with a fixed spin
orientation.

Electronic structure simulation algorithms based on the first quantization
method [128, 129, 130] describe a system of K electrons using the Configu-
ration Interaction (CI) space (in classical simulations, this would be called the
Full Configuration Interaction space). This is a linear space spanned by all pos-
sible Slater determinant states that can be formed by distributing K electrons

N ) and can be identified with

over N orbitals. The CI space has dimension ( e

the anti-symmetric subspace of (CV)®X,
The projection of the full electronic Hamiltonian A onto the CI space has
the form

ﬁ = Z Z tpl]’p> <q’Z + Z Z upqrs’p> <T’i ® ‘q> <3|j. (32)

i=1 p,q=1 1<i#j<K p,q,r,s=1

Here |p) = |¢,) are the chosen spin-orbitals. The coefficients ¢, , and u,,, are
known as one- and two-electron integrals. For example,

o = (ol (— 32+ V)l 63)

Likewise, ,qrs is the matrix element of the Coulomb interaction operator
1/|r —r3| between anti-symmetrized versions of the states ¢, @1, and ¥, ®1),.
Each copy of the single-electron Hilbert space C% is then encoded by a register
of log, N qubits. This requires n = K log, N qubits in total. The CI Hamil-
tonian H includes multi-qubit interactions among subsets of 2 log, N qubits.
The full Hilbert space of n qubits contains many unphysical states that do not
originate from the CI space. Such states have to be removed from simulation
by enforcing the anti-symmetry condition. This can be achieved by adding
suitable energy penalty terms to the CI Hamiltonian [131].
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An important parameter that affects the runtime of quantum simulation al-
gorithms is the sparsity of the simulator Hamiltonian. A Hamiltonian H is
said to be d-sparse if the matrix of H in the standard n-qubit basis has at most
d non-zero elements in each row (each column). For example, the runtime of
simulation algorithms based on quantum signal processing [132] scales lin-
early with the sparsity d. The CI Hamiltonian H has sparsity d ~ (K N)2.
Thus the first-quantization method is well-suited for high-precision simula-
tion of small molecules when the number of electrons K = O(1) is fixed and
the number of orbitals NV is a large parameter. As one approaches the contin-
uum limit N — oo, the number of qubits grows only logarithmically with NV
while the sparsity of H scales as d ~ N2,

The second quantization approach often results in a simpler simulator
Hamiltonian and requires fewer qubits, especially in the case when the filling
fraction K'/N is not small. This method is particularly well suited for quan-
tum simulation algorithms [133] and has been experimentally demonstrated
for small molecules [134]. Given a set of N orbitals 1, ..., 1y, the second-
quantized simulator Hamiltonian is

N N
a1 Af At A A
H = E tpq c;f)cq + 3 E Upgrs cjgc:;crcs7 (3.4)
p,q=1 D,q;r,s=1

where 6}2 and ¢, are the creation and annihilation operators for the orbital
th,. The Hamiltonian H acts on the Fock space spanned by 2" basis vectors
|n1,ng,...,ny), where n, € {0,1} is the occupation number of the orbital
1. The advantage of the second quantization method is that the Fermi statis-
tics is automatically enforced at the operator level. However, the number of
electrons can now take arbitrary values between 0 and N. The simulation has
to be restricted to the subspace with exactly K occupied orbitals. The second-
quantized Hamiltonian A can be written in terms of qubits using one of the
fermion-to-qubit mappings discussed in Section Sec. 3.2.3.

Within the above outline, there are several active areas of research. For
example, one may wonder if the redundancy of the space in the first quan-
tized representation can be reduced or completely avoided. Other questions
include the choice of basis functions and fermion-to-qubit mappings. These
are discussed in the next sections.
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3.2.2 Electronic basis functions

The discretization of the electronic Hilbert space for a quantum simulation re-
quires balancing two concerns. We need to represent the state with as few
qubits, but also, retain maximal Hamiltonian sparsity. These requirements
only partially align with those of classical many-particle quantum simulations.
In the classical setting, a compact state is crucial due to the exponential Hilbert
space, while Hamiltonian sparsity is less so; the choice of basis functions has
historically been made so that matrix elements of the Hamiltonian (the one-
and two-electron “integrals”) can be analytically evaluated [135, 126].

There are two families of basis functions in wide use in quantum chemistry
and quantum materials science: atomic orbital Gaussian bases and plane
waves. Gaussian bases are most commonly employed in molecular simulations
due to their compactness, while plane waves are most often used in crystalline
materials simulation, due to their intrinsic periodicity and ease of regularizing
the long-range contributions of the Coulomb operator (which are conditionally
convergent in an infinite system).

In Gaussian bases, linear combinations of Gaussian functions (referred to as
simply Gaussian basis functions) are placed at the nuclear positions. As they
are placed where the ground-state electron density is highest, they give a com-
pact representation of the wavefunction for bound states, but the Hamiltonian
is not sparse, with O(N*) second-quantized matrix elements. In a quantum
algorithm, this leads to high gate counts even for simple quantum primitives
such as a Trotter step.

Plane-waves offer greater simplicity as the accuracy of the basis is con-
trolled by a single parameter, the kinetic energy cutoff. While the number of
plane waves needed to reach a desired accuracy is larger than the number of
Gaussian states, the Hamiltonian contains fewer terms (O(/N?)) due to momen-
tum conservation. To reduce the number of required plane waves, it is essential
to employ pseudopotentials to remove the sharp nuclear cusp [137, 138]. Fur-
thermore, the asymptotic basis convergence of Gaussian and pseudopotential
plane wave calculations is the same: the feature governing the rate of con-
vergence is the wavefunction discontinuity or electron-electron cusp due to
the singularity of the Coulomb interaction (see Fig. 3.1). In classical simula-
tions, so-called explicit correlation methods can be used to remove the slow
convergence due to the singularity [139, 140]. How to use such techniques
with quantum computers has yet to be explored.
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Figure 3.1: Extrapolation of the Hartree-Fock (left) and correlation energy
(right) for chains of 10 hydrogen atoms, using cc-pVxZ Gaussian
bases, and various methods from [136]. While the mean-field en-
ergy converges exponentially fast in the basis size (roughly given
by 2?), the correlation energy converges as =% (inversely pro-
portional to the number of basis functions) due to the electron-
electron cusp.
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The need to expose more sparsity in the Hamiltonian while retaining a rea-
sonably compact wavefunctions is an active area of research in both classical
and quantum algorithms. Recent ideas have included new types of basis func-
tion that return to a more grid-like real-space basis [141, 142, 143, 144, 145]
where the Coulomb operator and thus Hamiltonian has only a quadratic num-
ber of terms, as well as factorizations of the Coulomb operator itself [ 146, 147].
The best choice of basis for a quantum simulation remains very much an open
question.

3.2.3 Fermion-to-qubit mappings

Since the basic units of a quantum computer are qubits rather than fermions,
any quantum simulation algorithm of fermions (e.g. for electronic structure)
employs a suitable encoding of fermionic degrees of freedom into qubits. For
example, the standard Jordan-Wigner mapping (sketched in Fig. 3.2) identi-
fies each Fermi mode (orbital) with a qubit such that the empty and the occu-
pied states are mapped to the qubit basis states |0) and |1) respectively. More

generally, the Fock basis vector |ny,...,ny) is mapped to a qubit basis vec-
tor [z1) ® - - - ® |z ), where each bit x; stores a suitable partial sum (modulo
two) of the occupation numbers ny, . .., ny. The Jordan-Wigner mapping cor-

responds to x; = n; for all j. This is not quite satisfactory since single-mode
creation/annihilation operators contain Jordan-Wigner strings (—1)™"" "
which may be very non-local in terms of qubits. On the other hand, updating
the qubit state x upon application of a single creation/annihilation operator re-
quires a single bit flip (see Fig. 3.3). More efficient fermion-to-qubit mappings
balance the cost of computing Jordan-Wigner strings and the bit-flip cost of
updating the qubit state. For example, the binary tree encoding proposed by
Kitaev and one of the authors [ 148 ] maps any fermionic single-mode operator
(e.g. ¢p or 6;) to a qubit operator acting non-trivially on roughly log /V or less
qubits. Generalizations of this encoding were studied in [149, 150, 151]. As a
consequence, the second-quantized Hamiltonian Eq. (3.4) expressed in terms
of qubits becomes a linear combination of Pauli terms with weight at most
O(log N). This is important in the context of VQE-type quantum simulations
(see Sec. 3.3.2) since Pauli operators with an extensive weight (of order N)
cannot be measured reliably in the absence of error correction.

A natural question is whether the number of qubits required to express a
Fermi system can be reduced by exploiting symmetries such as the particle
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Figure 3.2: Schematic of the Jordan-Wigner encoding for 3 spin-orbitals.
Fermions are represented by blue spheres. Each Fock basis vectors
(from the vacuum state, left, to the completely filled state, right)
is mapped onto a 3-qubit state, with empty (filled) spin-orbitals
corresponding to qubits in 0 (1).

number conservation or the point group symmetries of molecules. For ex-
ample, zero temperature simulations often target only one symmetry sector
containing the ground state. This motivates the study of symmetry-adapted
fermion-to-qubit mappings. The goal here is to reduce the number of qubits
required for the simulation without compromising the simple structure of the
resulting qubit Hamiltonian (such as sparsity). The simplest case of Z, symme-
tries is now well understood and the corresponding symmetry adapted map-
pings are routinely used in experiments [131, 152, 134, 153]. The U(1) sym-
metry underlying particle number conservation was considered in [154, 131,
155].

Dimension counting shows that a system of /N Fermi modes with exactly
K particles can be mapped to roughly log, (g) qubits. However, it remains
an open question whether this mapping can be chosen such that the resulting
qubit Hamiltonian admits a sparse representation in some of the commonly
used operator bases (such as the basis of Pauli operators) to enable applica-
tions in VQE. Mappings adapted to point group symmetries have been recently
consideredin [156]. Itis also of great interest to explore fermion-to-qubit map-
pings adapted to approximate and/or emergent symmetries.

Alternatively, one may artificially introduce symmetries either to the origi-
nal Fermi system or its encoded qubit version with the goal of simplifying the
resulting qubit Hamiltonian. This usually requires redundant degrees of free-
dom such as auxiliary qubits or Fermi modes [ 148, 157, 158, 159]. In the case
of lattice fermionic Hamiltonians such as the 2D Fermi Hubbard model or more
general models defined on bounded degree graphs, such symmetry-adapted
mappings produce a local qubit Hamiltonian composed of Pauli operators of
constant weight independent of N.
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Jordan-Wigner Parity

MEEEEEEE GG

Figure 3.3: Difference between Jordan-Wigner and parity encoding. The for-
mer encodes occupation numbers z; on qubit states, the latter par-
ities p; = 3_,; ; mod 2. Other strategies, such as the binary-tree
encoding, balance non-locality of occupation numbers and parities
to achieve more efficient encodings.

3.2.4 Model and non-electronic problems

While much of the above has focused on ab initio quantum chemistry and
electronic structure in quantum simulations, the diverse questions of chem-
istry and materials physics discussed in section 2 raise additional issues of
representation. For example, model Hamiltonians avoid the problem associ-
ated with a choice of basis by restricting the Hamiltonian to a predetermined
simple form on a lattice. The lattice structure permits specialized techniques,
such as specific fermionic encodings. Developing specialized representations
for model problems is of particular importance in simulating condensed matter
systems.

Other kinds of non-electronic simulations may involve different require-
ments on the basis than electronic problems. For example, in quantum reac-
tive scattering processes, there is little a priori information on the positions of
the particles; instead various grid representations, often in non-Cartesian co-
ordinate systems, are used [160, 161]. Alternatively, the particles of interest
may be bosons which engender new encoding considerations. Relatively little
attention has been paid to these questions so far in quantum algorithms.
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3.3 Quantum algorithms for ground and
excited states

There are many approaches to obtaining ground states or excited states on a
quantum computer. State preparation procedures attempt to construct a cir-
cuit to prepare a state with as large as possible overlap with the desired eigen-
state. One set of such procedures, which we review in Sec. 3.3.1 and which
includes adiabatic state preparation and quantum imaginary time evo-
lution, uses a prescribed evolution path. An alternative strategy is based on
variational methods (often called variational quantum eigensolvers) and is
reviewed in Sec. 3.3.2. Here, the preparation circuit itself is defined via the
optimization of the energy with respect to parameters of the circuit.

Given some state with reasonably large overlap with the desired state, one
can perform quantum phase estimation, which simultaneously projects the
state onto an eigenstate of the Hamiltonian and obtains an estimate for the
energy of this eigenstate. The error depends inversely on the simulation time.
The probability of successfully projecting onto the desired state is given by the
square overlap of the input state and the desired state, and it is thus necessary
to use some other method (such as the state preparation procedures above) to
prepare an input state with sufficient overlap with the desired state.

The various approaches come with different strengths and weaknesses. While
phase estimation allows the deviation of the final state from an exact eigenstate
(although not necessarily the desired eigenstate) to be systematically reduced,
it can require deep circuits with many controlled gates that are challenging
for devices with limited coherence and without error correction. Variational
methods or quantum imaginary time evolution replace such circuits by a large
number of potentially shorter simulations, which is expected to be easier to
implement on near-term machines. However, if one does not measure the en-
ergy by phase estimation, but instead by expressing the Hamiltonian as a sum
of multi-qubit Pauli operators and measuring the terms individually, the state
preparation and measurements must be repeated many times, with the error
converging only as the square root of the number of repetitions. Variational
methods are also limited by the variational form and ability to solve the asso-
ciated optimization problem, which may by itself represent a difficult classical
optimization. Finally, adiabatic state preparation and quantum imaginary time
evolution become inefficient for certain Hamiltonians.

State preparation methods are first discussed in Sec. 3.3.1 and Sec. 3.3.2
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(variational state preparation is discussed separately due to the large number
of different types of ansatz). Considerations for excited states are discussed
in Sec. 3.3.3. Phase estimation is reviewed in Sec. 3.4.

3.3.1 Preparing ground states along a prescribed path

Adiabatic state preparation

One general route to prepare the ground-state of a physical system on a quan-
tum device is through adiabatic state preparation. This relies on the well-
known adiabatic theorem [162, 163], which states that a system evolved
under a time-dependent Hamiltonian will remain in the instantaneous ground
state as long as the evolution is sufficiently slow and the spectrum of the Hamil-
tonian remains gapped. To make use of this, one chooses a Hamiltonian path
H()),0 < A < 1, such that the ground state of H(0) is easily prepared, while
H (1) is the Hamiltonian whose ground state one wants to obtain. The system
is then evolved under the time-dependent Schrodinger equation,

$ 010 = H(/T@), 0<t<T (35)

In the limit 7" — oo and if the spectrum of H, /7 is gapped for all ¢, the final

state |®r) is the exact ground state of H. Away from the adiabatic limit 7 —
00, corrections arise that depend on the instantaneous gap of H()\) and the
total time 7". Furthermore, if degeneracies occur along the path, a different
time-dependent Hamiltonian path (although with the same endpoints) must
be chosen.

Thus while this approach is very general, its practical applicability is limited
by the requirement of having to take the limit of large 7', and to choose a path
without degeneracies (see Fig. 3.4). The limit of large 7" may require deep
circuits that may not be practical in near-term quantum machines. Analyzing
the errors (and optimizing the path, for example by choosing an improved
f(s)) is also challenging due to the dependence on the unknown spectrum of
H, /7. Some of these questions have been studied in the more general context
of adiabatic quantum computation [164]. However, while this is one of the
first state preparation methods discussed for chemical systems [133], more
heuristic work in this area for problems of interest to chemistry and physics is
needed [165].



3.3 Quantum algorithms for ground and excited states

43

energy
=

energy
e

time time

Figure 3.4: Adiabatic state preparation. Starting from an eigenstate of a
simple Hamiltonian H, and slowly switching on the interaction
H — H, leads to an eigenstate of H (left). Along paths with degen-
eracies, adiabatic state preparation can lead to the wrong eigen-
state.

Quantum imaginary-time evolution

In classical simulations, one popular approach to prepare (nearly exact) ground-
states is imaginary-time evolution, which expresses the ground-state as the
long-time limit of the imaginary-time Schrédinger equation,

| g)

e
V) = lim ———— 3.6
Imaginary time-evolution underlies the family of projector quantum Monte

Carlo methods in classical algorithms [127].

To perform imaginary time evolution on a quantum computer, it is nec-
essary to implement the (repeated) action of the short-imaginary-time prop-
agator e~27H on a state. Given a Hamiltonian that can be decomposed into
geometrically local terms, H = 3, h,,, and a state | V) with finite correlation
length C, the action of e~A7hi can be generated by a unitary U= ¢ acting
on O(C') qubits surrounding those acted on by h;, i.e.

e*ATiLi ’\I/> ~ -

oAy UlV) =) | (3.7)

where the coefficients of the Pauli strings in A can be determined from local
measurements of the qubits around h;. This is the idea behind the quantum



44

3 Challenges for quantum algorithms in quantum simulation

imaginary time evolution (QITE) algorithm [166]. Like adiabatic state prepa-
ration, quantum imaginary time evolution can in principle prepare exact states
without the need for variational optimization. Also, the total length of imagi-
nary time propagation to achieve a given error is determined by the spectrum
of H and the initial overlap, rather than by the spectrum of H, /7 along the adi-
abatic path. However, the method becomes inefficient in terms of the number
of measurements and complexity of the operator A if the domain C grows to
be large along the imaginary time evolution path. In these cases, QITE can be
used as a heuristic for approximate ground-state preparation, analogous to us-
ing adiabatic state preparation for fixed evolution time. While initial estimates
in a limited set of problems show QITE to be resource efficient compared to
variational methods due to the lack of an optimization loop [166], a better nu-
merical understanding of its performance and cost across different problems,
as well as the accuracy of inexact QITE in different settings, remains to be
developed.

3.3.2 Variational state preparation and variational
quantum eigensolver

A class of state preparation methods that have been argued to be particularly
amenable to near-term machines is variational state preparation [167, 168,
169]. Here, similar to classical variational approaches, one chooses a class of
ansatz states for the ground state of the Hamiltonian of interest. Generally
speaking, such an ansatz consists of some initial state and a unitary circuit
parametrized by some set of classical variational parameters. Applying this
circuit to the initial state yields a guess for the ground state, whose energy is
then evaluated. This yields an upper bound to the true ground state energy.
One then varies the variational parameters to lower the energy of the ansatz
state.

In choosing the class of ansatz states, one pursues several goals: on the one
hand, it is crucial that the class contains an accurate approximation to the true
ground state of the system. On the other hand, one desires a class of circuits
that are easily executed on the available quantum computer, i.e. for a given set
of available gates, connectivity of the qubits, etc. Finally, it is important for
the classical optimization over the variational parameters to be well-behaved,
so as to be able to find low-energy minima. While we cannot list all possible
ansatz states below, we provide a representative sample.
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Unitary coupled cluster

An early example of a particular class of ansatz states that has been suggested
for applications in quantum chemistry is the unitary coupled-cluster (uCC)
ansatz [170, 168, 171]

d

Wooo) =T T |Wgp), T=3 3 wimel el e, ... (38)

k=1 i1...ij

ai...ag
Here, d denotes the maximum order of excitations in the uCC wavefunction
(for example d = 1, 2, 3 for singles, doubles and triples respectively), é:flk el
(Ci,, - .- C;,) are creation (destruction) operators relative to orbitals unoccupied
(occupied) in the Hartree-Fock state, and ¢ is a rank-2k tensor, antisymmet-
ric in the ay, ... a; and 7 ... 7; indices. This choice of ansatz is motivated by
the success of mean-field theory, which suggests that the density of excita-
tions in the true wavefunction should be small relative to the mean-field state.
Standard coupled cluster theory — written as e’ |V ;) - is widely used in clas-
sical quantum chemistry but is challenging to implement on a quantum device,
whereas the reverse is true for the unitary variant. Understanding the theoret-
ical and numerical differences between standard and unitary coupled cluster is
an active area of research [172, 173]. The variational quantum eigensolver al-

gorithm applied to the unitary coupled-cluster Ansatz is depicted in Fig. 3.5

Hardware-efficient ansatz

The unitary coupled cluster ansatz involves non-local gate operations and is
expensive to implement on near-term devices with limited qubit connectivity.
An alternative variational approach, pursued e.g. in Ref. [134] and termed
“hardware-efficient” there, is to tailor the ansatz specifically to the underlying
hardware characteristics. The circuits considered in Ref. [134], sketched in
Fig. 3.6, consist of alternating layers of arbitrary single-qubit gates and an en-
tangling gate that relies on the intrinsic drift Hamiltonian of the system. While
this drift Hamiltonian and thus the entangling gate is not known precisely, for
the variational approach it is sufficient to know that the gate is reproducible.
The variational parameters are only the rotations in the layer of single-qubit
gates. While it is not guaranteed that such an ansatz contains a good approxi-
mation to the state of interest, it is an example of an adaption of a method to
NISQ devices [134]. An application to BeH, is seen in Fig. 3.6.
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Figure 3.5: Workflow of the variational quantum eigensolver algorithm. The
classical optimization routine adds expectation values of the
Hamiltonian Pauli terms to calculate the energy and estimates new
values for the unitary parameters. The process is repeated until
convergence. From [174].
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Figure 3.6: Left: Hardware-efficient quantum circuit for trial state prepara-
tion and energy estimation, shown here for 6 qubits. The circuit is
composed of a sequence of interleaved single-qubit rotations, and
entangling unitary operations UENT that entangle all the qubits in
the circuit. A final set of post-rotations prior to qubit readout are
used to measure the expectation values of the terms in the qubit
Hamiltonian, and estimate the energy of the trial state. Right: en-
ergy minimization for the six-qubit Hamiltonian describing BeHs.
Adapted from [134].
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Adapt-VQE ansatz

In the adapt-VQE scheme, a collection of operators A; (operator pool) is chosen
in advance, and the ground state is approximated by

|adapt-vQr) = € €M UyE) (39)

Given a current parameter configuration ¢, ... 6,, the commutator of the
Hamiltonian with each operator in the pool is measured to obtain the gradient
of the energy (¥ adapt-VQE |H|W adapt—VQE> with respect to the parameters 6.
Repeating this multiple times and averaging over the obtained samples gives
the gradient of the expectation value of the Hamiltonian with respect to the
coefficient of each operator. The ansatz is improved by adding the operator A,
with the largest gradient to the left end of the ansatz with a new variational
parameter, thereby increasing n. The operation is repeated until convergence
of the energy [175]. Numerical simulations, for example for short hydrogen
chains, show that adapt-VQE can improve over the unitary coupled cluster
approach in terms of the accuracy reached for a given circuit depth.

Tensor networks

Tensor networks are a class of variational states which construct the global
wavefunction amplitude from tensors associated with local degrees of free-
dom. They specify a class of quantum states that can be represented by an
amount of classical information proportional to the system size. There are
two main families of tensor networks: those based on matrix product states
and tree tensor network states (MPS, TTNS) [176, 177] (also known in the
numerical multi-linear algebra community as the tensor-train decomposition
[178, 179] and the tree-structured hierarchical Tucker representation [180,
181]) and their higher dimensional analogs, projected entangled pair states
(PEPS) [182]; and those based on the multi-scale entanglement renormal-
ization ansatz (MERA) [183]. Because of their success in representing low-
energy states in classical simulations, they are a natural class of variational
wavefunctions to try to prepare in a quantum algorithm for low-energy states.
These tensor networks are schematically depicted in Fig. 3.7.

There are many analogies between tensor network algorithms and quan-
tum circuits. This analogy can be exploited to develop an efficient prepara-
tion mechanism for these states on a quantum computer. By recognizing that
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Figure 3.7: Graphical representation of (a) matrix product states, (b)
projected-entangled pair states. The boxes and circles represent
tensors of numbers. (c) Construction of deep multi-scale entangle-
ment renormalization ansatz (deep MERA). The figure shows an
isometry (one component of the MERA ansatz) being constructed
with exponential dimension via quantum circuits. Adapted from
[189] and [187].

the tensors in an MPS or a MERA can be associated with a block of unitaries
(with the bonds between tensors playing the role of circuit lines in a quantum
circuit) it is possible to prepare an MPS or MERA state on a quantum com-
puter [184, 185, 186]. Because the dimensions of the associated tensor grow
exponentially with the depth of the quantum circuit associated with it, it is
possible to prepare certain tensor networks with large bond dimension on a
quantum computer that presumably cannot be efficiently simulated classically;
an example of this is the so-called deep MERA [187].

There are many open questions in the area of tensor networks and quantum
computing. For example, preparing PEPS on a quantum computer appears
to be much less straightforward than preparing a matrix product state or a
MERA [188]. Similarly, although “deep” tensor network states can only be
efficiently simulated on a quantum computer, their additional representational
power over classically efficient tensor networks for problems of physical or
chemical interest is poorly understood.

Other considerations

Besides the choice of ansatz state, the computational challenges of variational
methods and VQE are twofold:

« Potentially, a very large number of measurements must be performed
to accurately estimate the energy. Indeed, the scaling is quadratically
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worse than when using quantum phase estimation. We will discuss this
point further in Sec. 3.9.

« The optimization of the variational parameters may be very difficult, in
particular if the energy exhibits a very non-trivial dependence on clas-
sical parameters with many local minima, and if gradient information is
not easily available. For some discussion of optimization algorithms in
this context, see Refs. [190, 191].

Some key advantages of the VQE approach are that it can often be carried
out with a large number of independent, short quantum simulations. This is
more suitable to NISQ machines than the long coherent circuits required for
approaches based on quantum phase estimation, which has been demonstrated
in several experiments [ 134, 152]. Furthermore, the approach is more resilient
against certain types of errors. For example, as mentioned already above, it is
generally not necessary to know exactly what circuit is executed for some vari-
ational parameters as long as it is reproducible; therefore, systematic coherent
tuning errors of the qubits (for example systematic deviations between the de-
sired and the actually applied single-qubit rotations) do not adversely affect
the results. In addition to studying the robustness of VQE against errors, it has
become a very active field to develop techniques that mitigate such physical
errors. Such approaches promise to reduce the impact of errors on near-term
machines before error correction becomes available. For work in this direction,
see Refs. [190, 192, 193, 194, 195, 196, 197].

3.3.3 Excited states

While much of the above discussion of state preparation and variational al-
gorithms has focused on ground-states, most of the same methods can also
be used with minor extensions for excited states. For example, adiabatic state
preparation can be used to prepare an excited state, so long as it is connected
to the initial state without a vanishing gap.

In the area of variational methods, it is often useful to choose the excited
state ansatz to be related to that of the ground-state, since at low-energies
much of the physics is the same. This is widely used in classical simulations
and essentially the same ideas have been ported to the quantum algorithm set-
ting. For example, in the quantum subspace expansion (QSE) [198], the
excited state is made via the ansatz |U') = Y, coF,| V), where {E,} is a
set of “excitation” operators and | V) is the ground-state constructed in VQE.
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In QSE, one needs to measure all the subspace matrix elements (¥| £l Eg| W),
(U|El H E3| W), thus the number of measurements grows quadratically with
the subspace. In the quantum Lanczos method, the QITE algorithm is used
to construct the subspace {¢ *#|¥), ¢~2|W) ..} and the special structure
of this space means that all subspace matrix elements can be constructed with
a number of measurements that grows only linearly with the size of the sub-
space [166]. Alternatively, one can fix the coefficients ¢, and reoptimize the
quantum circuit in the variational method; this is the basis of the multi-state
VQE method; other similar ideas have also been proposed. Connections be-
tween quantum subspaces and error correction have been explored in [199].

The above methods compute total energies of excited states, which have to
be subtracted from the ground state energy to give the excitation energies of
the system. A method to directly access excitation energies is desirable. One
route to achieve this goal is provided by the equation-of-motion (EOM) ap-
proach, also widely used in classical simulations [200] and recently extended
to quantum computing [201]. In the EOM approach, excitation energies are

obtained as o
E, = i [O"J HLOM v) (3.10)
(¥/[0,, O )
where U is an approximation to the ground state (such as the VQE ansatz) and
O,, is an excitation operator expanded on a suitable basis. The variational prob-
lem of finding the stationary points of AL, leads to a generalized eigenvalue

equation, the solutions of which are the excited-state energies.

3.4 Phase estimation

Quantum Phase Estimation (QPE) is a crucial step in many quantum algo-
rithms. In the context of quantum simulation, QPE enables high-precision
measurements of the ground and excited energy levels. This is achieved by
preparing a trial initial state |¢(0)) that has a non-negligible overlap with the
relevant eigenvector of the target Hamiltonian H and applying a quantum cir-
cuit that creates a superposition of time evolved states [¢(t)) = ¢~ 2¢|)(0))
over a suitable range of the evolution times ¢. In the simplest case, known as
the iterative QPE [6, 133] and sketched in Fig. 3.8, the final state is a super-
position of the initial state itself and a single time-evolved state,

1

\/5(\0> ® [1(0)) + €”[1) ® [4(t))). (3.11)
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Figure 3.8: Quantum circuit for iterative QPE. The first two single-qubit gates
bring the ancilla to the state % (\0> + €i0|1>). The controlled-

U(t) gate, with U(t) = e~ brings the register into the state
(3.11). The last Hadamard gate is needed to measure in the X basis.

Here one ancillary control qubit has been added that determines whether each
gate in the quantum circuit realizing e~ is turned on (control is 1) or off
(control is 0). The extra phase shift § coordinates interference between the
two computational branches such that useful information can be read out with
high confidence. Finally, the control qubit is measured in the so-called X-
basis, |[£) = (|0) & |1))/+/2 and the measurement outcome b € {+1, —1} is

recorded.

The iterative QPE works by performing many runs of the above subrou-
tine with a suitable choice of parameters ¢, f in each run and performing a
classical post-processing of the observed measurement outcomes. The ancil-
lary control qubit stays alive only over the duration of a single run since its
state is destroyed by the measurement. However, the remaining qubits that
comprise the simulated system stay alive over the entire duration of the QPE
algorithm. More specifically, let F, and |1,) be the eigenvalues and eigen-
vectors of H such that H = 3", Eq|ta) (1)a|. The trial state can be expanded
in the eigenbasis of H as [1)(0)) = Y, ¢a|ta). Then the joint probability dis-

tribution describing measurement outcomes by, ...,by = *+1 observed in N
runs of QPE has the form
N1
PI‘(bl, C 7bN) = Z |COé’2 H 5 (1 + bl COS (91 - Eatl)) . (312)
o i=1

Here 6; and ¢; are the phase shift and the evolution time used in the i-th run
and b; = =£1 is the observed measurement outcome. This has the same effect
as picking an eigenvector of H at random with the probability |c,|? and then
running QPE on the initial state |1/(0)) = |t¢,). Accordingly, QPE aims at
estimating a random eigenvalue £, sampled from the probability distribution
|co|?. We note that a suitably formalized version of this problem with the trial
state |00 . ..0) and a local Hamiltonian H composed of few-qubit interactions
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is known to be BQP-complete [202]. In that sense, QPE captures the full com-
putational power of quantum computers and any quantum algorithm can be
expressed as a special case of QPE. A common application of QPE is the task of
estimating the smallest eigenvalue F;y = min, E,. This requires a trial state
1(0)) that has a non-negligible overlap with the true ground state of [ to en-
sure that the minimum of a few randomly sampled eigenvalues F,, coincides
with Ey. For example, in the context of molecular simulations, |1/(0)) is often
chosen as the Hartree-Fock approximation to the ground state. Such a state is
easy to prepare as it can be chosen to correspond to a standard basis vector,
see Sec. 3.2.3.

The problem of obtaining a good estimate of the eigenvalue £, based on the
measured outcomes by, ..., by is an active research area, see [203, 204, 205,
206]. Assuming that the trial state has a constant overlap with the ground state
of H, the smallest eigenvalue E can be estimated using QPE within a given
error € using N ~ log (1/¢€) runs such that each run evolves the system over
time at most O(1/¢). As discussed in Sec. 3.5, the evolution operator e~ifit
(as well as its controlled version) can be approximated by a quantum circuit
of size scaling almost linearly in ¢ (neglecting logarithmic corrections). Thus
QPE can achieve an approximation error € at the computational cost roughly
1/e even if the trial state has only a modest overlap with the ground state. This
should be contrasted with VQE algorithms that have cost at least 1/¢* due to
sampling errors and where the trial state must be a very good approximation
to the true ground state, see Sec. 3.3.2. On the other hand, QPE is much more
demanding in terms of the required circuit depth and the gate fidelity. It is
expected that quantum error correction will be required to implement QPE in
a useful way (e.g. to outperform VQE in ground-state determination).

QPE also has a single-run (non-iterative) version where the time evolution
of the simulated system is controlled by a multi-qubit register and the X -basis
measurement of the control qubit is replaced by the Fourier basis measure-
ment [207]. The iterative version of QPE has the clear advantage of requiring
fewer qubits. It also trades quantum operations required to realize the Fourier
basis measurement for classical postprocessing, thereby reducing the overall
quantum resource cost of the simulation.

Since QPE is used ubiquitously in a variety of quantum applications, it is
crucial to optimize its performance. Below we list some open problems that
are being actively investigated; see Ref. [206] for a recent review.

« Given limitations of near-term quantum devices, of particular interest
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are tradeoffs between the depth of the QPE circuit and its spectral-resolution

power as well as its sensitivity to noise. It was shown [206] that that
the computational cost of QPE interpolates between 1/¢ and 1/¢? as the
depth (measured by the number of runs IV per iteration of the algorithm)
is reduced from O(1/¢) to O(1). A particular version of QPE with a tun-
able depth that interpolates between the standard iterative QPE and VQE
was proposed in [208].

+ Several methods have been proposed for mitigating experimental errors
for VQE-type simulations [194, 196, 197]. Such methods enable reli-
able estimation of expected values of observables on a given trial state
without introducing any overhead in terms of extra qubits or quantum
gates. Generalizing such error mitigation methods to QPE is a challeng-
ing open problem since QPE performs a non-trivial postprocessing of
the measurement outcomes that goes beyond computing mean values.

« Classical post-processing methods that enable simultaneous estimation
of multiple eigenvalues are highly desirable [206].

« Finally, a natural question is whether the time evolution operator eiHt
in QPE can be replaced by some other functions of H that are easier to

implement [209, 210].

3.5 Quantum algorithms for time evolution

3.5.1 Hamiltonian simulation problem

It was recognized early on [211, 212] that a quantum computer can be pro-
grammed to efficiently simulate the unitary time evolution of almost any phys-
ically realistic quantum system. The time evolution of a quantum system ini-
tialized in a given state |¢(0)) is governed by the Schrodinger equation

d[y(t))
dt
where H is the system’s Hamiltonian. Since any fermionic or spin system can
be mapped to qubits, see Sec. 3.2, below we assume that H describes a system
of n qubits. By integrating Eq. (3.13) for a time-independent Hamiltonian one

obtains the time-evolved state

() = e p(0)) (3.14)

= Hp(t)) . t>0 , (3.13)

l
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A quantum algorithm for Hamiltonian simulation takes as input a description
of H, the evolution time ¢, and outputs a quantum circuit U that approximates

—itH

the time evolution operator e within a specified precision e, that is,

|0 —e || <e . (3.15)

More generally, the circuit U may use some ancillary qubits initialized in the
|0) state. The simulation cost is usually quantified by the runtime of the algo-
rithm (the gate count of {/) and the total number of qubits. Applying the circuit
U to the initial state [)(0)) provides an e-approximation to the time-evolved
state |1 (t)). The final state {/]2)(0)) can now be measured to access dynamical
properties of the system such as time-dependent correlation functions. The
time evolution circuit U is usually invoked as a subroutine in a larger envelop-
ing algorithm. For example, the quantum phase estimation method employs a
controlled version of U/ to measure the phase accumulated during the time evo-
lution, see Sec. 3.4. The enveloping algorithm is also responsible for preparing
the initial state [¢)(0)).

While practical applications are concerned with specific Hamiltonian in-
stances, quantum simulation algorithms apply to general classes of Hamilto-
nians satisfying mild technical conditions that enable a quantum algorithm to
access the Hamiltonian efficiently. For example, a Hamiltonian can be specified

as a linear combination of elementary interaction terms denoted Vi,..., V},
such that ,
A=YaV, V<1 (316)
i=1

Here o; are real coefficients and ||V;|| is the operator norm (the maximum mag-
nitude eigenvalue). In the case of local Hamiltonians [212, 6], each term Vv
acts non-trivially only a few qubits. This includes an important special case of
lattice Hamiltonians where qubits are located at sites of a regular lattice and
the interactions V; couple small subsets of nearest-neighbor qubits. Molecular
electronic Hamiltonians mapped to qubits assume the form Eq. (3.16), where
V; are tensor products of Pauli operators which may have a super-constant
weight. This situation is captured by the Linear Combination of Unitaries
(LCU) model [213]. It assumes that each term V; is a black-box unitary op-
erator that can be implemented at a unit cost by querying an oracle (more
precisely, one needs a “select-V" oracle implementing a controlled version
of ‘71, e Vm). The LCU model also assumes an oracle access to the coeffi-
cients o, see [213] for details. Alternatively, a quantum algorithm can access
the Hamiltonian through a subroutine that computes its matrix elements. A
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Hamiltonian H is said to be d-sparse [214] if the matrix of H in the standard n-
qubit basis has at most d non-zero entries in a single row or column. The sparse
Hamiltonian model assumes that positions and values of the nonzero entries
can be accessed by querying suitable oracles [215]. Most physically realistic
quantum systems can be mapped to either local, LCU, or sparse qubit Hamil-
tonians such that the corresponding oracles are realized by a short quantum
circuit. As described below, the runtime of quantum simulation algorithms is
controlled by a dimensionless parameter 7" proportional to the product of the
evolution time ¢ and a suitable norm of the Hamiltonian. One can view 7" as
an effective evolution time. A formal definition of 7" for various Hamiltonian
models is as follows.

t max; |o;| (Local)
T = t3 ;| (LCU) (3.17)
td||H || ;maz  (Sparse)

Here || H||,nq, denotes the maximum magnitude of a matrix element.

It is strongly believed that the Hamiltonian simulation problem is hard for
classical computers. For example, Ref. [216] showed that any problem solv-
able on a quantum computer can be reduced to solving an instance of a suitably
formalized Hamiltonian simulation problem with a local Hamiltonian. Techni-
cally speaking, the problem is BQP-complete [6]. All known classical methods
capable of simulating general quantum systems of the above form require re-
sources (time and memory) exponential in n. On the other hand, Feynman’s
original insight [211] was that a quantum computer should be capable of simu-
lating many-body quantum dynamics efficiently, such that the simulation run-
time grows only polynomially with the system size n and the evolution time 7'.
This intuition was confirmed by Lloyd who gave the first quantum algorithm
for simulating local Hamiltonians [212]. The algorithm exploits the Trotter-
Suzuki product formula

7it1:11 7%[‘}2

e*it(ﬁ1+ﬁ2+...+ﬁ[‘) ~ (e e L. eii“{[[‘)é . (318)

By choosing a sufficiently small Trotter step 0 one can approximate the evolu-
tion operator e~*/* by a product of few-qubit operators describing evolution
under individual interaction terms. Each few-qubit operator can be easily im-
plemented by a short quantum circuit. The runtime of Lloyd’s algorithm scales
as [212, 217]

O(LPT?*™Y), (3.19)

where T is the effective evolution time for local Hamiltonians, see Eq. (3.17).
Importantly, the runtime scales polynomially with all relevant parameters.
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Lloyd’s algorithm was a breakthrough result demonstrating that quantum
computers can indeed provide an exponential speedup over the best known
classical algorithms for the task of simulating time evolution of quantum sys-
tems. However, it was quickly realized that the runtime of Lloyd’s algorithm
is unlikely to be optimal. Indeed, since any physical system simulates its own
dynamics in a real time, one should expect that a universal quantum simulator
can attain a runtime scaling only linearly with ¢. Moreover, for any realis-
tic Hamiltonian composed of short-range interactions on a regular lattice, one
should expect that the simulation runtime is linear in the space-time volume
nt. Clearly, the scaling Eq. (3.19) falls far behind these expectations.

Algorithmic tools

The last decade has witnessed several improvements in the runtime scaling
based on development of new algorithmic tools for Hamiltonian simulation.
Most notably, a breakthrough work by Berry et al. [215, 213, 218] achieved an
exponential speedup over Lloyd’s algorithm with respect to the precision €. A

powerful algorithmic tool introduced in [215] is the so-called LCU lemma [215].

It shows how to construct a quantum circuit that implements an operator
U = Zf”il Z(A]z where f3; are complex coefficients and IZ are black-box uni-
tary operators. Assuming that U’ is close to a unitary operator, the lemma
shows that U’ can be well approximated by a quantum circuit of size roughly
M Y, |3;| using roughly 3, | 3;| queries to the oracle implementing U, . . ., Uy,
(and their inverses). The simulation algorithm of Ref. [213] works by splitting
the evolution into small intervals of length 7 and using the truncated Tay-
lor series approximation ¢ ™ ~ YK _(—itH)"/m! = U,. Accordingly,
et = (¢=TH)t/T ~ (,)!/7. Substituting the LCU decomposition of H into
the Taylor series one obtains an LCU decomposition of U;. For a suitable choice
of the truncation order K, the truncated series U, is close to a unitary oper-
ator. Thus U, can be well approximated by a quantum circuit using the LCU
lemma. The runtime of this simulation algorithm, measured by the number of
queries to the Hamiltonian oracles, scales as [213]

Tlog (T'/e)

loglog (T'/€)
Here T is the effective evolution time for the LCU Hamiltonian model, see
Eq. (3.17). This constitutes a square-root speedup with respect to 7" and an

exponential speedup with respect to the precision compared with Lloyd’s al-
gorithm.

(3.20)
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An important algorithmic tool proposed by Childs [219] is converting a
Hamiltonian into a quantum walk. The latter is a unitary operator W that
resembles the evolution operator e~ with a unit evolution time ¢. For a
suitable normalization of H, the quantum walk operator W has eigenvalues
eriaresin(Ea) where F, are eigenvalues of 1. The corresponding eigenvectors
of W are simply related to those of H. Unlike the true evolution operator, the
quantum walk W can be easily implemented using only a few queries to the
oracles describing the Hamiltonian H, e.g. using the LCU or the sparse models.
To correct the discrepancy between W and the true evolution operator, Low
and Chuang [220] proposed the Quantum Signal Processing (QSP) method.
One can view QSP as a compiling algorithm that takes as input a black-box
unitary operator W, a function f : C — C, and outputs a quantum circuit
that realizes f (). Here it is understood that f(17/) has the same eigenvectors
as T while each eigenvalue z is mapped to f(z). The circuit realizing f (V)
is expressed using controlled-W gates and single-qubit gates on the control
qubit. Remarkably, it can be shown that the Low and Chuang algorithm is
optimal for the sparse Hamiltonian model [220]. Its runtime, measured by the
number of queries to the Hamiltonian oracles, scales as

log(1/€)

log log(1/¢)
where T is the effective evolution time for the sparse model, see Eq. (3.17).
This scaling is optimal in the sense that it matches previously known lower
bounds [218, 215]. We note that simulation methods based on the sparse and
LCU Hamiltonian models have been recently unified using a powerful frame-
work known as qubitization [221]. It provides a general recipe for converting
a Hamiltonian into a quantum walk using yet another oracular representation
of a Hamiltonian known as a block encoding [221].

(3.21)

Algorithms based on the quantum walk (such as the QSP) or truncated Tay-
lor series may not be the best choice for near-term applications since they re-
quire many ancillary qubits.

In contrast, the original Lloyd algorithm [212] and its generalizations based
on higher order product formulas [222] require only as many qubits as
needed to express the Hamiltonian. In addition, such algorithms are well-
suited for simulating lattice Hamiltonians where qubits are located at sites of a
regular D-dimensional grid and each elementary interaction V; couples a few
qubits located nearby. Lattice Hamiltonians contain L = O(n) elementary in-
teractions. Each few-qubit operator that appears in a product formula approx-
—itH

imating e can be expressed using a few gates that couple nearest-neighbor
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Figure 3.9: Trotter-like time evolution (top) and divide-and-conquer strategy
for lattice systems (bottom). From [224] and [225] respectively.

qubits. The corresponding quantum circuit can be easily implemented on a
device whose qubit connectivity graph is a D-dimensional grid.

Quite recently, Childs and Su [223] revisited simulation algorithms based
on product formulas and demonstrated that their performance is better than
what one could expect from naive error bounds. More precisely, an order-p
product formula approximates the evolution operator ¢~*#* under a Hamilto-
nian H = A 4+ B with a simpler operator that involves time evolutions under
Hamiltonians A and B such that the approximation error scales as "' in the
limit¢ — 0. Childs and Su [223] showed that the gate complexity of simulating
a lattice Hamiltonian using order-p product formulas scales as (nT")!+1/P¢=1/p
which shaves off a factor of n from the best previously known bound. Here 7’
is the effective evolution time for the local Hamiltonian model.

A major breakthrough in simulating lattice Hamiltonians has been recently
achieved by Haah et al. [225]. This work introduced a new class of product
formulas based on the divide-and-conquer strategy and showed that lattice
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Hamiltonians can be simulated with gate complexity O(nT), where O hides
logarithmic corrections.

This result confirms the physical intuition that the cost of simulating lattice
Hamiltonians scales linearly with the space-time volume. The algorithm of
Ref. [225], sketched in Fig. 3.9, approximates the full evolution operator by
dividing the lattice into small (overlapping) subsystems comprising O(logn)
qubits each and simulating time evolution of the individual subsystems.

The errors introduced by truncating the Hamiltonian near the boundaries
are canceled by alternating between forward and backward time evolutions.
The error analysis is based on a skillful application of the Lieb-Robinson
bound [226, 227] that controls how fast information can propagate across
the system during the time evolution.

Finally, we note that while product formulas achieve a better scaling with
system size than LCU or QSP methods by exploiting commutativity of Hamil-
tonian terms, they suffer from worse scaling with the simulation time and the
error tolerance. A recent approach of multiproduct formulas [228] com-
bines the best features of both. From Trotter methods, it inherits the simplic-
ity, low-space requirements of its circuits, and a good scaling with system size.
From LCU, it inherits the optimal scaling with time and error, up to logarith-
mic factors. Essentially, the work [228] shows how a certain type of high-
order product formula can be implemented with a polynomial gate cost in the
order (scaling as p?). In contrast, the standard Trotter-Suzuki formulas scale
exponentially with the order (scaling as 57).

Open problems

The existing simulation methods such as QSP are optimal in terms of the query
complexity. However their runtime may or may not be optimal if one ac-
counts for the cost of implementing the Hamiltonian oracles by a quantum
circuit. Indeed, in the case of lattice Hamiltonians, system-specific simula-
tion strategies that are not based on oracular models are known to achieve
better runtime [225]. Improved system-specific simulation methods are also
available for quantum chemistry systems. For example Ref. [143] achieved
a quadratic reduction in the number of interaction terms present in molec-
ular Hamiltonians by treating the kinetic energy and the potential/Coulomb
energy operators using two different sets of basis functions — the plane wave
basis and its dual. The two bases are related by the fermionic version of the
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Fourier transform which admits a simple quantum circuit [ 143]. This simplifi-
cation was shown to reduce the depth of simulation circuits (parallel runtime)
based on the Trotter-Suzuki and LCU decompositions [143]. One may an-
ticipate that further improvements can be made by exploiting system-specific
information. It is an interesting open question whether molecular Hamiltoni-
ans can be simulated in depth scaling poly-logarithmically with the size of the
electronic basis. More recent advanced sparse Hamiltonian simulation algo-
rithms can exploit prior knowledge of other Hamiltonian norms to get better
performance. For instance, the algorithm of Ref. [229] has an effective time

T = \/d||H||max||H]|]1, which is a tighter bound than the one displayed in
Eq. (3.17). This can be further improved to T' = tv/d||H||,_, which is a tighter
bound than both, see [230] for details. However, these scaling improvements
come with a larger constant factor that has not been thoroughly character-
ized.

In many situations the Hamiltonian to be simulated can be written as H =
Hy + V', where the norm of H is much larger than the norm of V, while
the time evolution generated by H, can be “fast-forwarded” by calculating the
evolution operator analytically. For example, Hy could represent the kinetic
energy in the momentum basis or, alternatively, potential energy in the posi-
tion basis. Hamiltonian simulation in the interaction picture [231] is an
algorithmic tool proposed to take advantage of such situations. It allows one to
pay alogarithmic cost (instead of the usual linear cost) with respect to the norm
of Hy. This tool has been used to simulate chemistry in the plane wave basis
with O(N?) gates in second quantization, where N is the number of plane
waves [231]. In the first-quantization, the gate cost scales as O(N'/3K®/3),
where K is the number of electrons [232].

Likewise, better bounds on the runtime may be obtained by exploiting the
structure of the initial state ¢/(0). In many applications, ¢)(0) is the Hartree-
Fock approximation to the true ground state. As such, the energy of 1)(0) tends
to be small compared with the full energy scale of H and one may expect that
the time evolution is confined to the low-energy subspace of H. How to de-
velop state-specific simulation methods and improved bounds on the runtime
is an intriguing open problem posed in [233].

An interesting alternative to quantum simulations proposed by Poulin et
al. [209] is using the quantum walk operator W described above directly in
the quantum phase estimation method to estimate eigenvalues of H. This cir-
cumvents errors introduced by the Trotter or LCU decomposition reducing the
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total gate count. It remains to be seen whether other physically relevant quan-
tities such as time dependent correlation functions can be extracted from the
quantum walk operator sidestepping the unitary evolution which is relatively
expensive compared with the quantum walk.

While the asymptotic runtime scaling is of great theoretical interest, prac-
tical applications are mostly concerned with specific Hamiltonian instances
and constant approximation error (e.g. four digits of precision). To assess the
practicality of quantum algorithms for specific problem instances and com-
pare their runtime with that of state-of-the-art classical algorithms, one has
to examine compiling methods that transform a high-level description of a
quantum algorithm into a quantum circuit that can be run on particular hard-
ware. This motivates development of compilers tailored to quantum simu-
lation circuits. For example, Hastings et al. [234] examined Trotter-Suzuki
type simulation of chemical Hamiltonians mapped to qubits using the Jordan-
Wigner transformation. An improved compiling method was proposed reduc-
ing the runtime by a factor O(N), where N is the number of orbitals. Childs
etal. [235] and Campbell [217] recently proposed a randomized compiler tai-
lored to Trotter-Suzuki simulations. It improves the asymptotic runtime scal-
ing Eq. (3.19) to L>/?T?%/2¢1/2 and achieves almost 10° speedup for simula-
tion of small molecule quantum chemistry Hamiltonians [235, 217]. Different
types of compilers may be needed for NISQ devices and fault-tolerant quantum
machines [236]. Indeed, in the context of NISQ devices, arbitrary single-qubit
gates are cheap and the simulation cost is dominated by the number of two-
qubit gates. In contrast, the cost of implementing an error-corrected quantum
circuit is usually dominated by the number of non-Clifford gates such as the
T-gate or the CCZ-gate. Since large-scale quantum simulations are expected
to require error correction, developing compiling algorithms minimizing the
T-gate count is vital. For example, Low et al. [237] recently achieved a square-
root reduction in the T-count for a state preparation subroutine employed by
the LCU simulation method. Compiling algorithms that minimize the num-
ber of generic single-qubit rotations (which are expensive to implement fault-
tolerantly) were investigated by Poulin et al. [209]. This work considered im-
plementation of the quantum walk operator W associated with a lattice Hamil-
tonian that contains only a few distinct parameters (e.g. translation invariant
models).

Estimating resources required to solve practically important problems is
linked with the study of space-time tradeoffs in quantum simulation [238,
239, 240]. For example, in certain situations the circuit depth (parallel run-
time) can be reduced at the cost of introducing ancillary qubits [241] and/or
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using intermediate measurements and feedback [242]. Of particular interest
are methods for reducing the size of quantum simulation circuits using “dirty”
ancilla — qubits whose initial state is unknown and which must be restored
to their original form upon the completion of the algorithm [241, 243, 237],
see also [244]. For example, if a Hamiltonian simulation circuit is invoked as
a subroutine from a larger enveloping algorithm, the role of dirty ancillas may
be played by data qubits borrowed from different parts of the algorithm.

The Hamiltonian simulation problem has a purely classical version. It deals
with the ODE p = —0H/0q, ¢ = 0H/0p, where p, q are canonical coordi-
nates of a classical Hamiltonian system. Numerical algorithms for integrating
classical Hamiltonian dynamics known as symplectic integrators have along
history [245, 246] and are widely applied in simulations of molecular dynam-
ics [247]. One may ask whether new advances in quantum or classical Hamil-
tonian simulation algorithms can be made by an exchange of ideas between
these two fields.

Finally, the problem of simulating Hamiltonians in the presence of noise,
without active error correction in the NISQ era, is an open problem. The pri-
mary question in this context is whether noise tolerant methods, analogous to
variational algorithms in ground-state energy optimization, can also be devel-
oped for Hamiltonian simulation.

3.6 Finite-temperature algorithms

How a quantum computer can be used to simulate experiments on quantum
systems in thermal equilibrium is an important problem in the field of quantum
simulation. Early algorithms for the simulation of Gibbs states [248, 249, 250]
were based on the idea of coupling the system of interest to a set of ancillary
qubits and letting the system and bath together evolve under a joint Hamilto-
nian, thus mimicking the physical process of thermalization. The main disad-
vantages of thermalization-based methods are the presence of additional an-
cillary qubits defining the bath states, and the need to perform time evolution
under H for a thermalization time ¢ that could be very long.

More recent proposals have focused on ways to generate finite-temperature
observables without long system-bath thermalization times and/or large ancil-
lae bath representations. For example, Ref. [251] showed how to realize the
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imaginary time evolution operator e=PH/2 using Hamiltonian simulation tech-
niques. Applying a suitable version of the Hubbard-Stratonovich transforma-
tion the authors of Ref. [251] obtained a representation e BH/Z = Yo Calas
where c,, are real coefficients and U,, are unitary operators describing the time
evolution under a Hamiltonian A'/2. Although the square-root H'/? is gener-
ally not easily available, Ref. [251] showed how to realize it for Hamiltonians
composed of few-qubit positive semidefinite terms using an ancillary system.
Applying state-of-the-art methods to simulate time evolution under A'/2 and
the LCU Lemma (see Section 3.5.1) to realize the desired linear combination of
unitaries, Ref. [251] obtained a quantum algorithm for preparing the thermal
Gibbs state with gate complexity 3'/22"/2Z~1/2 where Z is the quantum par-
tition function. Here we ignored a prefactor scaling poly-logarithmically with
[ and the inverse error tolerance. A closely related but slightly less efficient
algorithm was discussed in Ref. [252].

Several more heuristic quantum algorithms for finite-temperature simula-
tions have been proposed recently. However, most of these algorithms are
challenging to analyze mathematically and generally do not have performance
guarantees. For example, variational ansatz states for the Gibbs state that
can be prepared with simple circuits have been proposed to bypass possibly
long thermalization times. One example is the product spectrum ansatz
[253] (PSA), where a shallow unitary circuit applied to a product thermal state
is chosen to minimize the free energy of the system.

A different avenue is to sample from the Gibbs state rather than gener-
ate it explicitly on the quantum computer. For example, quantum Metropo-
lis sampling [254] samples from the Gibbs state in an analog of classical
Metropolis sampling, using phase estimation on a random unitary applied to
the physical qubits to “propose” moves, and an iterative amplification proce-
dure to implement the “rejection”. Much like the classical Metropolis algo-
rithm, the fixed point of this procedure samples the Gibbs state. Alternatively,
the quantum minimally entangled typical thermal state (METTS) algo-
rithm [166] samples from the Gibbs state using imaginary time evolution ap-
plied to pure states, implemented via the quantum imaginary time evolution
algorithm. One strength of quantum METTS is that it uses only the physical
qubits of the system and potentially shallow circuits, thus making it feasible
even in the NISQ era, where it has been demonstrated on quantum hardware
for small spin systems. An application to the Heisenberg model is shown in
Fig. 3.10.

Another alternative is to work within the microcanonical ensemble. This
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Figure 3.10: Application of the quantum METTS algorithm to the 6-site 1D
Heisenberg model. Energy is shown as a function of inverse tem-
perature (3, using unitaries acting on D = 2...5 spins. From
[166].

is the basis of the minimal effective Gibbs ansatz (MEGA) [255], which
attempts to generate pure states within the energy window corresponding to
a microcanonical ensemble (for example, using phase estimation). The basic
challenge is to ensure that the energy window is chosen according to the de-
sired temperature. The MEGA method estimates the temperature from asymp-
totic properties of the ratio of the greater and lesser Green’s functions, which
in principle can be measured on the quantum device using the techniques
in Sec. 3.9.

While there are many different proposed techniques for estimating observ-
ables of thermal states which all appear quite plausible on theoretical grounds,
little is known about their heuristic performance, and almost none have been
tested on real devices. In this sense, thermal state algorithms lag greatly behind
those for ground-states for problems of interest in chemistry and materials sci-
ence. To identify the best way forward, heuristic benchmarking for systems of
relevance in physics and chemistry will be of major importance. The problem
of benchmarking is further discussed in Sec. 3.8.
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3.7 Hybrid quantum-classical methods

3.7.1 Quantum embedding methods

Embedding algorithms use a divide-and-conquer strategy to break a large quan-
tum simulation into smaller pieces that are more amenable to simulation. The
properties of the original model and the reduced models are related to each
other in an (ideally) self-consistent fashion. These methods are popular both
in condensed matter physics to study correlated electronic materials, where
they reduce the problem of solving a bulk fermionic lattice model to that of
studying a simpler Anderson-like impurity model, as well as in molecular ap-
plications, to reduce the computational scaling of methods in the simulation
of complicated molecules.

In classical simulations, there are many flavors of quantum embedding.
These can be grouped roughly by the choice of variable used to communi-
cate between regions; dynamical mean-field theory (DMFT) works with
the Green’s function and self-energy [256, 257, 258]; density matrix em-
bedding theory with the one-body density matrix [259, 258]; density func-
tional embedding via the electron density [260, 258], and other methods,
such as OM/MM, ONIOM, and fragment MO methods communicate via the
electrostatic potential [261].

There has been growing interest in quantum embedding methods in the
quantum information community, with the quantum computer playing the
role of the quantum mechanical solver for the fragment/impurity problem
(see Fig. 3.11). Ref. [224] suggested that a small quantum computer with
a few hundred qubits could potentially speed up material simulations based
on the DMFT method, and proposed a quantum algorithm for computing the
Green’s function of a quantum impurity model. Kreula et al. [263] subse-
quently proposed a proof-of-principle demonstration of this algorithm. Sim-
ilarly, Rubin [264] and Yamazaki et al [262] have explored the potential of
DMET in conjunction with a quantum computer for both condensed-phase lat-
tice models as well as for large molecular calculations. Ground states of quan-
tum impurity models and their structural properties in the context of quantum
algorithms have been analyzed in Ref. [265].
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3.7.2 Other hybrid quantum-classical algorithms

Beyond standard quantum embedding, there are many other possibilites for
hybrid quantum-classical algorithms. Variational quantum eigensolvers have
previously been discussed for eigenstate problems, see Sec. 3.3.2. One can
also classically postprocess a quantum simulation of an eigenstate to improve
it, in an analog of post-Hartree-Fock and post-complete-active-space methods,
as has been explored in [266]. In quantum molecular dynamics, it is natural
to use a quantum computer to propagate the wavefunction or density matrix
subject to motion of the nuclei, as is done today in classical Born-Oppenheimer
dynamics. Similarly, the use of quantum optimizers and quantum annealers,
for example to assist classical conformational search [267], can also be viewed
as types of quantum-classical hybrids.

3.7.3 Open questions

It is clear that one will rely on hybrid quantum-classical algorithms for many
years to come, and there remain many open questions. One is how to best
adapt quantum algorithms within existing quantum-classical frameworks. For
example, Green’s function embedding methods are generally formulated in
terms of actions rather than Hamiltonians; unfolding into a bath representa-
tion, consuming additional qubits, is currently required. More compact repre-
sentations of the retarded interactions suited for quantum simulation should
be explored (see for example, Ref. [268] for a related proposal to generate ef-
fective long-range interactions). Similarly one should explore the best way to
evaluate Green’s functions or density matrices, minimizing the coherence time
and number of measurements. It is also possible that new kinds of embedding
frameworks should be considered. For example, quantum-quantum em-
bedding algorithms within the circuit model of quantum computation have
been proposed to simulate large-scale “clustered” quantum circuits on a small
quantum computer [269, 270]. These are circuits that can be divided into
small clusters such that there are only a few entangling gates connecting dif-
ferent clusters. Another promising class of embedding algorithms known as
holographic quantum simulators was also recently proposedin [271, 272].
Such algorithms enable the simulation of 2D lattice models on a 1D quantum
computer by converting one spatial dimension into time. Whether it is useful
to incorporate a classical component into such quantum-quantum frameworks
clearly needs to be explored.
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Another question is how best to implement the feedback between the quan-
tum and classical parts of the algorithm. For example, as already discussed
in the variational quantum eigensolver, such optimizations require the evalu-
ation of approximate gradients on the quantum device, and to noisy optimiza-
tion with limited gradient information on the classical device. Improving both
aspects is clearly needed. Improving the performance of the quantum-classical
interface also involves software engineering and building libraries between
quantum and classical simulation software. These questions are discussed in
section 4.

3.8 Benchmark systems

Researchers working on quantum simulation algorithms would greatly benefit
from having access to well-defined benchmarks. Such benchmarks help the
community by defining common conventions (e.g. choosing specific bases)
and curating the best results.

There are two types of benchmarks to develop.

« the first is a benchmark that allows quantum algorithms (possibly on dif-
ferent hardware) to be compared against each other. For example, such
problems could include a test suite of molecular Hamiltonian simulation
problems for some specific choice of electron basis functions, fermion-
to-qubit mapping, evolution time, and the desired approximation error.

+ The second is curated data from the best classical methods for specific
problems and well-defined Hamiltonians. Wherever possible, the data
should not only include ground-state energies, but also excited-states
and other observables, and if exact results are not available, an estimate
of the precision should be given.

In the near-term era, suitable candidates for benchmarking may include
molecular or material science Hamiltonians that can be expressed with about
50 or fewer qubits. Some promising candidates discussed in the literature
include lattice spin Hamiltonians [273], and models of correlated electrons
such as the 2D Fermi-Hubbard model [274], the uniform electron gas (jel-
lium) [143], and the Haldane pseudo-potential Hamiltonian that models FQHE
systems [275, 276, 277]. While some aspects of these models are easy to solve
classically for systems of moderate size, others remain difficult, providing room
for quantum advantage.
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Naturally, there is a wide range of molecular or materials problems that
could be chosen, a small number of which are highlighted in section 2. One
relevant factor to check when constructing a Hamiltonian benchmark prob-
lem is to verify that it is indeed difficult to simulate classically [278]. Ide-
ally, there should be a way to maximally tune the “complexity” for classical
simulation, which then defines a natural setting for demonstrating quantum
supremacy. Commonly, a way to tune the Hamiltonian (in model Hamiltoni-
ans) is to change the parameters of the Hamiltonian directly. In more realistic
settings, one may change the size or geometry of the system or the chemical
identity of the atoms.

3.9 Reading out results

3.9.1 Equal-time measurements

It is of course an essential part of any quantum computation to perform a
measurement on the final state and thus read out the result of the compu-
tation. Conventionally, this is achieved through projective measurements of
individual qubits in the computational basis. More complicated operators can
be measured through standard techniques, for example by first applying a uni-
tary rotation to the state that maps the operator onto Pauli-Z, or by using an
ancillary qubit.

For very complicated operators, however, this can become quite resource-
intensive. Consider for example measuring the expectation value of the Hamil-
tonian, which is required e.g. in the VQE (see Sec. 3.3.2). This can be done by
writing the Hamiltonian as a sum of products of Pauli operators and measuring
each one individually. Each measurement must be repeated a sufficient number
of times to collect accurate statistics. Since for many applications, the number
of operators grows quite quickly with the number of qubits (for example as
N* in typical quantum chemistry applications) and the state may have to be
prepared anew after a projective measurement, it is important to organize the
terms in such a way that the number of operations to achieve a desired accu-
racy is minimized. Some work in this direction appears in Sec. V of Ref. [134],
as well as more recently in Refs. [279, 280]. Nonetheless, the need to con-
verge a large number of measurements to high precision presents a practical
problem in many applications, particularly in many hybrid quantum-classical
algorithms.
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3.9.2 Dynamical properties and Green’s functions

Much of the experimentally relevant information about a system, for example
as obtained in scattering experiments such as optical or X-ray spectroscopy or
neutron scattering, is encoded in dynamical properties. Access to these prop-
erties allows for a more direct comparison between theoretical predictions and
experiments, thus allowing to infer microscopic information that is difficult to
extract solely from the experiment.

A convenient way to capture this information is via the single- or few-
particle Green’s functions, which can be simply related to time-correlation
functions of observables, such as the dynamic structure factors and dipole-
dipole correlation functions. For example, the particle and hole components
of the single-particle Green’s function in real time (¢ > 0) are given by

Gha(t) = (Wlea(eGO)e)  Ghglt) = (Wlea(®)Es(0)[0),  (3.22)

where «, 3 can be spin, orbital or site indices, |¢)) is the quantum state of
interest (for example the ground state), and ¢ () = ettt ég)e*“ﬁ . These
can be measured by decomposing the fermion creation and annihilation op-
erators into unitary combinations and applying standard techniques, see e.g.
Ref. [281, 224] (a quantum circuit for measuring products of unitaries, one of
which time-evolved, is shown in Fig. 3.12.

However, this procedure is expensive as it requires separate calculations
for each time ¢, the particle/hole, real/imaginary and potentially orbital/spatial
components of the Green’s function, and finally a potentially large number of
repetitions for each to achieve some desired target accuracy. While some initial
work has shown how to improve this slightly by avoiding having to re-prepare
the initial state every time (which could be prohibitive), further improvements
and developments of alternatives, would be very valuable.
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It should be noted that the behavior of the Green’s function is very con-
strained both at short times (due to sum rules) and at long times (where the
decay is governed by the longest time-scale of the system). Therefore, of pri-
mary interest is the regime of intermediate times where classical methods are
most difficult to apply. However, in these other regimes, the additional struc-
ture could potentially be employed to reduce the computational effort also on
a quantum computer.
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4.1 Quantum compilers and libraries

Until recently, programming a quantum computer was generally done by
writing out an algorithm as a sequence of quantum gates. If one were to com-
pare this to classical computers, it is as if one programmed in logical gates,
such as NAND. In practice, almost all programming on classical computers
is done in high-level languages that hide such low-level details from the pro-
grammer, thus drastically increasing productivity as well as portability of code
between different types of processors. The step of compilation turns high-level
code into instructions for the specific processor, and achieving the same in the
realm of quantum computation is one goal of quantum compilers.

To this end, a variety of approaches based on either instruction sets em-
bedded into existing programming frameworks or independent programming
languages aimed directly at quantum computers have been developed, along
with tools to compile the programs into a target gate set or classically simulate
the circuit (see Sec. 4.2 and Fig. 4.1). In addition to high-level programming
languages, an important aspect are libraries of commonly used subroutines,
such as quantum phase estimation or arithmetic operations. Domain specific
libraries are discussed in Sec. 4.3.

An important challenge in quantum compilation is the optimal translation
of a given quantum circuit into native gates. In the case of a NISQ quantum
computer, where operations are performed directly on physical qubits, this is
the set of physical operations; in the case of a fault-tolerant quantum com-
puter, it is the set of protected gates offered by the error correction code. An
important class of target gates for fault-tolerant schemes are Clifford+7" cir-
cuits, i.e. circuits consisting of Clifford gates and 7/4 rotations, referred to as
T gates. Compiling into these has received a great deal of attention, see e.g.
Refs. [283, 284].
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Figure 4.1: Typical workflow on a digital quantum simulator. A problem is
first defined at a high-level and a suitable quantum algorithm is
chosen. The quantum algorithm is then expressed as a quantum
circuit, which in turn needs to be compiled to a specific quantum
gate set. Finally, the quantum circuit is executed on a quantum
processor or with a quantum circuit simulator. From [282].

4.2 Classical simulation of (noisy) quantum
circuits

Testing out quantum algorithms by running their circuits on classical hard-
ware has been of utmost importance to the field of quantum algorithms in
recent years. Theoretical analysis by itself usually only bounds the asymp-
totic scaling of quantum algorithms, and as such is agnostic to prefactors that
may well change which algorithm is preferable in practice. Furthermore, many
algorithms, such as VQE, are heuristic and their performance cannot be guar-
anteed; in these cases, numerical experiments on classical hardware are the
only way to assess the practical usefulness of the algorithms.

To facilitate such numerical tests, fast quantum circuit simulators canbe
used. In the general case, these scale exponentially with the number of qubits,
although for very shallow circuits or special subclasses of gate sets (such as
Clifford gates) more efficient algorithms may exist. Given this exponential scal-
ing, up to 30 qubits can be simulated on desktop computers, and supercomput-
ers can study systems of the order of 50 qubits. Several academic and industry
groups are working on making high-performance simulators, both for desk-
top computers and massively parallel or cloud-based supercomputers, widely
available to the public. At the same time, better methods are becoming avail-
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able for simulating special classes of circuits, for example circuits that consist
of a large number of Clifford gates and few non-Clifford gates (such as arbi-
trary rotations), which can be simulated in a time that is exponential only in the
number of non-Clifford gates [285], or shallow circuits which can be evaluated
more efficiently using a variety of techniques [286, 287, 288, 289, 290].

Another direction is the development of approximate circuit simulation
methods, based e.g. on tensor networks [291, 292] or machine-learning ap-
proaches [293]. Expected aspects of NISQ circuits such as sparse connectivity
of qubits, low depth, and noise, raise the potential viability of effective ap-
proximate simulation. Further, simulation of certain quantum algorithms for
chemistry and materials may be effective for physical systems with limited
correlation. Such simulations can help ascertain when quantum computation
can provide more accurate solutions than classical approaches. The presence
of noise in NISQ circuits can make them easier to simulate classically [294].
However, rigorous modeling of noise effects carries its own computational
challenges. Standard methods for simulation of noise work by evolving a
density matrix [295], which entails a quadratic increase in memory footprint.
Approximate noise models such as the Pauli twirling approximation eliminate
this overhead [296, 297]. Development of effective simulation mechanisms for
noise and understanding its effect is essential to understanding the capabilities
of quantum algorithms in the NISQ era.

4.3 Libraries for quantum simulation of
quantum chemistry and quantum materials
science

It is also essential to develop software to enable domain scientists in chem-
istry and physics to deploy or develop quantum computing methods without
needing a detailed knowledge of all aspects of the quantum algorithms. There
has been significant effort to develop packages and tools of this kind, some
examples being OpenFermion [298], QISKit [299], and the Microsoft Quan-
tum Development Kit (QDK) chemistry library [300]. Currently the pack-
ages have some overlapping capabilities but are different in scope and em-
phasis; for example, OpenFermion focuses on quantum chemistry applica-
tions; QISKit Aqua is a library of crossdomain quantum algorithms, which
enables domain-specific users to run quantum algorithms across four areas:
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quantum chemistry, artificial intelligence, optimization and finance; and the
Microsoft QDK encompasses the Q# quantum programming language and li-
braries, while the Microsoft QDK chemistry library is a software stack that in-
terfaces with the NWChem computational chemistry package [301] through a
standardized “Broombridge” format, with the goal of automating the full quan-
tum simulation of chemistry [302].

Given the proliferation of packages, domain specific languages, and pro-
gramming interfaces, it is important to develop tools enabling cross-platform
development and to develop basic standards. There are many industry ef-
forts to develop user interfaces and GUI's on top of the lower libraries. Im-
proved tools for facilitating near-term experiments, including incorporating
error mitigation or scheduling measurements for variational methods for spe-
cific hardware implementations, should also be developed.

4.4 Interfacing and incorporating classical
simulation software

It is also important to properly interface to and incorporate classical simulation
software. The types of interface will differ depending on the physical problem,
but include

1. classical preprocessing, e.g. the generation of Hamiltonian matrix el-
ements (integrals) or providing guess wave-functions for state prepara-
tion

2. interfaces for hybrid quantum-classical algorithms, e.g. for geometry
optimization, orbital optimization, Born-Oppenheimer dynamics, and
quantum embedding

3. classical post-processing, to interpret results or for further classical
simulations, e.g. active space perturbation theory calculations, noise re-
duction, extrapolations, etc.

Distinct challenges arise in different applications. For example, the molecu-
lar quantum chemistry programs can typically provide molecular orbital Hamil-
tonian matrix elements to quantum algorithm software, but many condensed
phase codes do not even compute such matrix elements as they are not needed
in density functional calculations. Further, although such basic matrix ele-
ments are available in molecular codes, there are different conventions with
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respect to basis function ordering, sign and normalization conventions, etc.
We note also that many simulation programs are constructed in a relatively
tightly coupled fashion making it hard to input information back into the pro-
gram such as Green’s functions or density matrices.

The software ecosystem also varies widely between different fields. While
quantum chemistry and ab initio condensed phase electronic structure pro-
grams are often large multi-developer packages covering many simulation meth-
ods, and include both commercial and academic codes with large user commu-
nities, other simulation areas, such as lattice model condensed matter simula-
tions, often involve more specialized programs focusing on a single technique.
It is necessary to not only support the development of such specialized soft-
ware but also the distribution, packaging, and education regarding its usage,
in order for it to be used by the diverse set of researchers in the quantum al-
gorithms area.

In general, it is should be unnecessary for a quantum algorithms developer
to learn about all the implementation quirks of classical simulation software.
However, despite efforts by organizations such as the Molecular Software Sci-
ences Institute ! to standardize where possible, it is also unrealistic to expect
all codes to adopt and support the same conventions. A more fruitful strategy
is to develop dedicated middleware between classical simulation software
and quantum simulation software. Such middleware is already widely used to
manage workflow, for example in the Materials Genome project (pymatgen)
[303] or the Atomistic Simulation Environment (ASE) [304]. Middleware is
also actively being developed in industry, for example in the Microsoft-PNNL
collaboration, or in the QISKit and OpenFermion interfaces to open-source
quantum chemistry packages such as Psi4 and PySCF. We note that these ef-
fort have largely focused on quantum chemistry, and should be extended to
other simulation problems.

Overall, the requirements of classical software to support the development
of quantum algorithms overlap strongly with the general agenda of advanc-
ing simulation software infrastructure: standardizing interfaces; developing
flexible middleware; better packaging of specialized codes; modularization of
large codes. We expect therefore that resources devoted to supporting emerg-
ing quantum algorithms in classical software will benefit the wider classical
simulation community as well.

!https://molssi.org
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Figure 4.2: Development of quantum software for contemporary quantum
simulation of quantum chemistry and materials science is moti-
vated by research goals such as developing new quantum algo-
rithms, benchmarking existing quantum algorithms on classical
hardware, and performing simulations of molecules and materials.
These goals entail specific technical needs and challenges (such as
the development of compilers and libraries, of efficient classical
simulators of quantum circuits in ideal and noisy conditions, and
middleware to interface existing quantum packages between each
other and with classical simulation software) that the community
can address by the development of a quantum software stack.

4.5 Summary

In this section, we discussed some important goals of present-day quantum
simulations, identified needs and challenges raised by these goals, and outlined
a set of applications, utilities and routines — a software stack — to help the
community advance efficiently. These items are summarized in the diagram in
Fig. 4.2.
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5.1 Diversity

Maintaining and enhancing diversity is critical to creating a large and
qualified workforce. Given the rapid growth in the demand for qualified work-
ers in the areas of quantum computing and quantum simulation, broadening
participation is a time-critical problem. How to achieve diversity in all senses —
gender, ethnicity, backgrounds, differently-able, geography, etc. — ultimately
requires increasing the diversity of students who obtain chemistry, physics,
math, and computer science degrees. Unfortunately, in some subdisciplines,
recent years have seen the number of women and underrepresented minori-
ties pursuing graduate degrees decrease rather than increase, highlighting the
severity of the problem.

There are clearly no simple solutions. However, significant time and invest-
ment into this problem has been made by professional organizations (such as
the American Chemical Society (ACS) and American Physical Society (APS)
via their respective committees on diversity and women) as well as by indus-
try (e.g. in the APS/IBM internship program '). It is important to adopt a
data-driven approach and not to reinvent the wheel. For example, the set of
effective practices documents produced by the APS ?, or the diversity re-
sources maintained by the ACS *, are requisite reading. A common finding
is that efforts should be organized around gathering and implementing and
assessing best practices. Rather than list out all best practices, we mention
particular ones highlighted during the workshop.

An important ingredient for a positive climate is the makeup of the lead-
ership. In particular, it is important to have a chair/dean/high level manager

'https://www.aps.org/programs/women/scholarships/ibm/index.cfm

“https://www.aps.org/programs/women/reports/cswppractices/index.cfm

Shttps://www.acs.org/content/acs/en/membership-and-networks/acs/welcoming/diversity/diversity-
resources.html
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who communicates well with faculty/students/employees, and with females
and minorities in these groups in particular. The leadership needs to listen to
concerns and to care enough to act both publicly and privately to effect needed
changes, and to clarify behavior that will not be tolerated. The leadership also
plays a central role in including diversity concerns in searches. Consequently,
a potential avenue to ensure best practices are implemented is to focus on
training of the key individuals in leadership positions.

Another question is when to start focusing on encouraging students and
addressing the leaky pipeline. While public schools usually do not have time
to introduce programs of any depth during the school year, during the under-
graduate years there are more options. In particular, summer internships in
STEM subjects for women and minorities have the potential for great impact.
This is not solely because of the scientific training they provide, but because
they introduce the student to mentors who play a central role in encouraging
students to continue in the discipline. Ensuring that such mentors receive the
appropriate training as described above may be one way to maximize the im-
pact of internships. Local programs such as at universities can target promising
students at the high school and junior high level and bring them in for shorter
or longer periods during the summer for enrichment programs. Such univer-
sity mentors of high school students can be encouraged and even nurtured as
examples of best practices.

Given the diverse opinions and the various uncertainties in this area, it is
also important to generate and maintain statistics to assess outcomes. With the
limited resources that typical academic groups possess, it may be beneficial to
engage efforts in the social sciences. Indeed, the early stage in the development
of the quantum simulation workforce can be seen as a unique opportunity for
innovation in diversity initiatives and for engagement between the social and
physical sciences. Institutionalizing the metrics and assessment to simplify
the process for future efforts will be valuable beyond the field of quantum
simulation and quantum science.

5.2 Academia and industry

The development of quantum algorithms, hardware, and software for quan-
tum simulation is currently a joint effort between academia and industry. This
is a non-traditional situation and introduces new aspects to manage given the
different motivations and interests of the various parties. For example, much
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of the development of quantum hardware is focused in industry. What is the
model for academia to engage with quantum hardware? What will be the fund-
ing model for this interaction? Will such machines be purchased by federal
agencies for academic use?

Another challenge in the academia/industrial interaction is represented by
the differing policies regarding intellectual property (IP). While freedom to
publish is paramount to academia, industry is protective of intellectual prop-
erty. The scope and ownership of possible IP needs to be clearly defined at
the beginning of a collaboration, but in general academic collaborators do not
know about IP rules or patent policies. It will be important for academics to
educate themselves regarding these matters. The requisite material should be
developed and provided online either by industry or in academic/industrial
partnerships.

Finally, the academic/industry interface is complicated by the different or-
ganizational sizes. Many industrial efforts collate many scientists and would
constitute multi-principal-investigator (multi-PI) efforts in an academic set-
ting. Interacting as a single PI with such a large group presents a large dispar-
ity in size and power, which affects the academic interaction. This issue is also
important regarding questions of standards and directions for the field. Ensur-
ing that academics are represented by collective organizations, rather than
only as individuals, will be important in ameliorating the imbalance in size and

power in discussion and negotiations about scientific issues and directions in
the field.

5.3 Education and training

Training students and researchers to work at the intersection of quantum chem-
istry, quantum materials science, and quantum algorithms requires new per-
spectives. The field needs the “right people”, but who these people are, and
how to create a community of them, remains unclear.

In the area of undergraduate and graduate education, the relevant disci-
plines are physics, chemistry, computer science, and mathematics. We note
that there is increasing demand in industry to hire people trained for quan-
tum algorithms and quantum simulations at the bachelor’s and master’s level.
There are deficiencies within all these undergraduate curricula with respect to
training; typical chemistry and physics curricula leave little room for course
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work in computer science and mathematics, and vice versa. While one way to
enhance undergraduate education is via internship programs (see above) and
summer schools, within the congested undergraduate curriculum it is most
practical to condense the relevant information into existing courses rather than
designing new curricula. Encouraging basic course requirements in introduc-
tory quantum mechanics, and ensuring that such a course contains concepts
of quantum information as well as the usual chemical and physics applica-
tions is one possibility. Another is to include some aspects of quantum into
introductory computer science (CS) and CS+X courses that are increasingly
popular among chemistry and physics students. It is important not to waste
effort and developing shared curricula in federally funded efforts should be
encouraged.

At the graduate level, there is more room for interdisciplinary educa-
tion and programs. One model to look towards is the Department of Energy
Computational Science Graduate Fellowship program *, which imposes strict
program of study requirements for students of all academic backgrounds, re-
quiring two graduate-level courses in three areas: a scientific field, mathemat-
ics, and computer science. We note that at the graduate level, it is important
not only to cover traditional theoretical quantum computer science, but also
more practical aspects including quantum software and hardware engineer-
ing. Given that expertise in these areas are spread across institutions multi-
institutional efforts in the area of education and curricula development are a
potential possibility for support. We note that industry has taken a proactive
role in educational efforts into quantum computing in recent years, and new
model of industry/academia collaboration in education should be developed.

5.4 Summary

In this Section, we explored some issues facing research activity in academia
and at the interface with industry. We identified the need to build a diverse
and inclusive workforce, of interacting in an informed manner with research
in the private sector, and of increasing the presence of quantum mechanics and
interdisciplinary requirements in various kinds of undergraduate and graduate
courses. These issues are classified and summarized in Fig. 5.1.

*https://www.krellinst.org/csgf/
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Figure 5.1: Issues discussed in Sec. 5 related to diversity in research and the
workforce, interactions between academia and industry, and edu-
cation and training of undergraduate and graduate students. QM,
CS, QIS and IP stand for quantum mechanics, computer science,
quantum information science and intellectual property respec-
tively.
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