text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Biological Sciences (BIO)
Integrative Organismal Systems (IOS)
design element
IOS Home
About IOS
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Examples of Broader Impacts
Supplements & Other Opportunities
See Additional IOS Resources
View IOS Staff
BIO Organizations
Biological Infrastructure (DBI)
Environmental Biology (DEB)
Emerging Frontiers (EF)
Integrative Organismal Systems (IOS)
Molecular and Cellular Biosciences (MCB)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional IOS Resources
BIO Dear Colleague Letters
BIO Reports
Interdisciplinary Research
Merit Review
Merit Review Broader Impacts Criterion: Representative Activities
Image Credits
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Discovery
Superorganisms Are More Than the Sum of Their Parts

Studying ants to find out how colony size affects patterns of behavior and energy use

Photo of three California seed-harvester ant queens along with brood and a young worker ant.

Three California seed-harvester ant queens along with brood and a young worker ant.
Credit and Larger Version

January 25, 2011

How does size affect the organization and physiology of superorganisms such as bacterial communities, insect colonies or human cities? James Waters and Tate Holbrook, graduate students in the School of Life Sciences at Arizona State University, work on answering this question by studying how colony size affects the patterns of behavior and energy use in ant colonies.

Social insect colonies are excellent study organisms because, despite the lack of either physical connections between individuals or any kind of centralized control system, the whole colony can exhibit impressive feats of organization including the division of labor, extensive foraging networks and elaborate nest architecture.

For their studies, Waters and Holbrook mainly focus on the California seed-harvester ant, Pogonomyrmex californicus. Queens of this species can be collected following the ants' annual mating flights and brought back to the lab to start new colonies. Within a month or two, eggs laid by the queens develop into larvae, pupae and adult workers. Over the course of a year, the colonies may grow as large in size as to include 1,000 ants.

One question that interested Waters is whether colonies become more efficient as they get bigger. The first step in figuring this out was to estimate the power demands of the colonies as a function of their size. One way to think of an animal is as an engine that burns oxygen as a fuel to power all of life's processes, from locomotion to communication. Waters used a tool called respirometry to measure the amount of oxygen being consumed by entire colonies as they breathed within special chambers.

While larger colonies obviously needed more energy overall compared to smaller colonies, as colonies grew, they surprisingly needed less energy per ant. When groups of ants were taken out of their colonies, however, they all required the same relative amount of energy. These patterns suggest that there is something special about being in the environment of the colony that regulates energy use by individual ants, and this energy use changes, or scales, with the size of the colony.

The scaling of energy use may be associated with colony size-related changes in behavior. An important behavioral pattern in colonies of ants and other social insects is the division of labor--when different workers specialize in different jobs, like brood care and foraging.

Holbrook investigated how colony size influences division of labor in P. californicus. First, he carefully painted ants with unique color combinations so he could identify individual workers within each colony. He then watched colonies of different sizes for many hours, recording which ants performed which jobs. Holbrook discovered that as colony size increases, so does division of labor. In smaller colonies, individual workers perform a variety of jobs, but in larger colonies, workers tend to specialize in specific jobs. It remains to be tested whether higher division of labor makes larger colonies more efficient.

The studies of Waters, Holbrook and their colleagues indicate that colonies of seed-harvester ants, and probably other social insects as well, are more than the sum of their parts. Social interactions between colony members give rise to colony-level properties that vary with colony size and shape the physiology and behavior of individuals.

These results may extend to broader contexts, including the regulation of cells within organisms and the organization of individuals within societies. In fact, these studies question the very nature of what it means to be an individual. If the basic biology of a single ant is so strongly influenced by the composition of the colony in which it lives, perhaps the ant is not itself an individual so much as it is a part of an entity existing on a higher level of biological organization, the superorganism.

-- James S. Waters, Arizona State University, james.waters@asu.edu, and C. Tate Holbrook, Arizona State University, ctholbrook@asu.edu

This Behind the Scenes article was provided to LiveScience in partnership with the National Science Foundation.

Investigators
James Waters
Tate Holbrook
Jennifer Fewell
Jon Harrison

Related Institutions/Organizations
Arizona State University

Locations
Arizona
California

Related Programs
Behavioral Systems Cluster
Environmental and Structural Systems Cluster

Related Awards
#0419704 Atmospheric Oxygen Effects on Insect Body Size and Tracheal Function
#1011180 DISSERTATION RESEARCH: Scaling of work in insect societies
#0446415 Collaborative Research: Division of Labor in Communal Groups
#0746352 Atmospheric Oxygen Influences on the Size of Modern and Fossil Insects.

Total Grants
$1,490,759

Related Websites
LiveScience.com: Behind the Scenes: Superorganisms Are More Than The Sum of Their Parts: http://www.livescience.com/animals/superorganisms-energy-use-bts-101223.html
James Waters' Web Page: http://solsgrads.asu.edu/waters
Tate Holbrook's Web Page: http://solsgrads.asu.edu/node/61
Waters, Holbrook, Fewell and Harrison article in Oct. 2010 American Naturalist: http://www.journals.uchicago.edu/doi/abs/10.1086/656266

Photo of a respirometry chamber used to measure metabolic rates of whole ant colonies.
A custom-designed respirometry chamber was used to measure metabolic rates of whole ant colonies.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page