text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Computer & Information Science & Engineering (CISE)
Computer & Information Science & Engineering (CISE)
design element
CISE Home
About CISE
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
Advisory Committee for Cyberinfrastructure
See Additional CISE Resources
View CISE Staff
CISE Organizations
Advanced Cyberinfrastructure (ACI)
Computing and Communication Foundations (CCF)
Computer and Network Systems (CNS)
Information & Intelligent Systems (IIS)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional CISE Resources
Contact CISE OAD
Subscribe to receive special CISE announcements
Serving and Working at NSF
Assistant Director's Presentations and Congressional Testimony
CISE Dear Colleague Letters
CISE Distinguished Lecture Series
Webcasts/Webinars
Designing Disruptive Learning Technologies Webinars
WATCH Series
Workshops
CS Bits & Bytes
Big Data Research Initiative
US Ignite at NSF
CISE Strategic Plan for Broadening Participation
Science, Engineering and Education for Sustainability NSF-Wide Investment (SEES)
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Discovery
Synthetic Brains

Researchers study the feasibility of brains made from carbon nanotubes

Illustration of heads with brains.

Researchers are building mathematical models that accurately reflect neuron connections.
Credit and Larger Version

January 27, 2009

Synthetic brains are a long way from reality, but researchers at the University of Southern California, funded by the National Science Foundation, are taking the first steps to build neurons from carbon nanotubes that emulate human brain function.

"At this point we still don't know if building a synthetic brain is feasible," said Alice Parker, professor of electrical engineering. "It may take decades to realize anything close to the human brain but emulating pieces of the brain, such as a synthetic vision system or synthetic cochlea that interface successfully with a real brain may be available quite soon, and synthetic parts of the brain's cortex within decades."

The challenges to creating a synthetic brain are staggering. Unlike computer software that simulates brain function, a synthetic brain will include hardware that emulates brain cells, their amazingly complex connectivity and a concept Parker calls "plasticity," which allows the artificial neurons to learn through experience and adapt to changes in their environment the way real neurons do.

There is also the matter of scale. By 2022, with conventional technology, if the team could construct a synthetic brain that emulated real brain function, even crudely, it would take 100 billion artificial neurons and a very a large room to hold them.

"Obviously the technology will have to be downsized to aid a human being or be feasible as a robot brain," Parker said. Power is another consideration. The power requirements for a synthetic brain are staggering because a human brain never turns off. "In a transistor, things are on or off so it's a black-or-white situation, but in the brain there are also many shades of gray and power is continuously being consumed," Parker noted.

But before the researchers can tackle concerns of power and scale, they are building mathematical models that accurately reflect the Byzantine connections of all the neurons and demonstrate how the connections allow neurons to communicate with each other.

Each neuron in the cortex--a part of the brain that contributes significantly to conscious thought and intelligence--is connected to tens of thousands of other neurons. The researchers are also implementing the complex computations carried out by each neuron on all the inputs it receives from other neurons.

"It's a nonlinear phenomenon and almost impossible to model but that's what we're attempting to do," Parker said.

The researchers have shown that portions of a neuron can be modeled electronically using carbon nanotube circuit models and have performed detailed simulations of the circuit models. A single archetypical neuron, including excitatory and inhibitory synapses, has been modeled electronically and simulated. Parker and her co-researcher, Chongwu Zhou, are in the process of combining these circuit models of neurons to create a functional carbon nanotube circuit model of a small network of neurons. This small network of interconnected neurons will be simulated using the carbon nanotube models. This network demonstrates an interesting neural circuit that detects moving edges in a selected direction.

Parker believes carbon nanotubes are an ideal material to emulate brain function because their 3-D structure allows connectivity in all directions on all planes and because a carbon-based prosthesis is less likely to be rejected by the human body than one made from inorganic materials. But their invasive nature could result in them invading surrounding tissue and prompting lesions and cancers.

"It's a possibility and something else that needs to be addressed for the technology to be feasible," Parker said.

As the researchers move ahead with their mathematical modeling and neuron construction, beginning with a single synapse, they ponder "plasticity," neuroscientists' term for the brain's ability to learn and adapt to change. "Our brains can grow new neurons and the synapses between them in an hour--a remarkable biological feature that is difficult to emulate from an engineering perspective," Parker said.

Emulating such plasticity in a synthetic brain will require a major leap in technology, similar to the leap from cathode ray tubes to transistors. "We don't know what the new technology will look like yet, but it will be a technology that can self-assemble and reshape itself. As we work in the lab building neurons or constructing mathematical models, we must consider the requirement of plasticity, even if we don't yet know what it looks like."

Aside from the daunting technological challenges, a synthetic brain or brain components will also raise ethical and environmental issues. The role of emotions in learning are just beginning to be understood, and it appears they are incredibly important to brain function.

"Based on what I know right now, emotions would have to be included for a synthetic brain to be able to learn," Parker said. "It's important to understand their cause and effect."

--  Diane E. Banegas, (703) 292-8070 dbanegas@nsf.gov

Investigators
Alice Parker
Chongwu Zhou

Related Institutions/Organizations
University of Southern California

Locations
California

Related Awards
#0726815 Biomimetic Cortical Nanocircuits

Total Grants
$359,996

Animation showing an artist's conception of a carbon nanotube synapse.
View Video
Animation showing an artist's conception of a carbon nanotube synapse.
Credit and Larger Version

Photo of Alice Parker, professor of electrical engineering at the University of Southern California.
Alice Parker, professor of electrical engineering at the University of Southern California.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page