text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Computer & Information Science & Engineering (CISE)
Computer & Information Science & Engineering (CISE)
design element
About CISE
Funding Opportunities
Advisory Committee
Career Opportunities
Advisory Committee for Cyberinfrastructure
See Additional CISE Resources
View CISE Staff
CISE Organizations
Advanced Cyberinfrastructure (ACI)
Computing and Communication Foundations (CCF)
Computer and Network Systems (CNS)
Information & Intelligent Systems (IIS)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Merit Review
NSF Outreach
Policy Office
Additional CISE Resources
Advisory Committee Meetings
Career Opportunities
Funding Rates
Budget Excerpt
Assistant Director's Presentations and Congressional Testimony
CS Bits & Bytes
CISE Distinguished Lecture Series
Cyberlearning Webinar Series
Data Science Webinar Series
Smart & Connected Health Webinar Series
WATCH Series
CISE Strategic Plan for Broadening Participation
Keith Marzullo on Serving in CISE
Cybersecurity Ideas Lab Report
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Using Your Computer to Grow More Nutritious Rice for a Hungry World

Computational biologists use a powerful distributed computing network to research rice genome for increased yields of more nourishing rice varieties

Photo of basmati rice before harvest.

Basmati rice before harvest. Computational biologists are studying rice to create better strains.
Credit and Larger Version

October 14, 2008

Earlier this year, consumers around the world noticed higher food prices as the cost of most grains escalated. In many parts of the developing world, rice, a crucial staple for billions of people, became too expensive or not available at all, triggering large-scale hunger and food riots that destabilized entire countries and regions.

In May of this year, a group of computational biologists at the University of Washington began to tap the collective power of more than 1 million desk top computers to better understand the protein structures of rice plants. Building on research funded by the National Science Foundation, the Nutritious Rice for the World project is already yielding results that are being used by plant biologists around the world. The goal of this combined effort is to grow hardier and more productive strains of rice that are also more nutritious.

Led by Ram Samudrala, an associate professor and computational biologist at the University of Washington, the project taps the World Community Grid, a distributed computing system created by IBM that links up computers all over the planet. The grid combines the spare power of computers not in use to handle large-scale computational problems such as analyzing rice genomics.

The project is one of five initiatives being tackled by the World Community Grid right now and, according to Samudrala, it is taking up about a third of the grid's current capacity. By using the collective power of the grid, Samudrala and his collaborators estimate the project will be completed in two years, considerably faster than the 200 years they estimate it would take a conventional computer system to complete the same job.

Ultimately, the combined power of these computers should allow the researchers to map out the 30,000 to 60,000 rice protein structures and better understand their related functions. Armed with this information, plant biologists should be able to begin to provide the world's farmers with rice varieties that can grow with less water, resist insects and diseases and provide a more nutritious meal.

Samudrala believes that such specialized rice strains can help relieve hunger by solving another challenge in the global food situation--getting food from the places it is produced to the people who need it. "The fundamental problem with food shortages in the world is one of distribution," Samudrala says. "Creating distribution chains costs money. We overcome that by designing new crop species that indirectly address this problem by providing higher yields but also better nutrition and adaptability to local and global environments."

Samudrala estimates it will take a few years for the project's findings to reach the world's rice patties, but he is optimistic the eventual impact will be positive. He adds that the project can provide insights for growing other cereal crops as well. Given the large number of people who eat rice as their primary source of grain, this research could go a long way in tackling some of the food security challenges currently facing the human race.

--  Dana W. Cruikshank, (703) 292-8070 dcruiksh@nsf.gov

Ram Samudrala

Related Institutions/Organizations
University of Washington


Related Programs
Plant Genome Research Program
Advances in Biological Informatics

Related Awards
#0217241 Modelling Structure and Function of Proteins Encoded by the Rice Genome

Total Grants

Related Websites
More information about the Nutritious Rice for the World project on the World Community Grid: http://bit.ly/1Vmask4

Ram Samudrala and Michal Guerguin discuss the World Community Grid to study rice protein structures.
View Video
Ram Samudrala and Michal Guerguin discuss the World Community Grid to study rice protein structures.
Credit and Larger Version

Photo of farmers transplanting rice to their fields.
Farmers transplant rice to their fields.
Credit and Larger Version

Email this pagePrint this page
Back to Top of page