text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
Discoveries
design element
Discoveries
Search Discoveries
About Discoveries
Discoveries by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page
All Images

Discovery
The TeraGrid Community Steps Up to Help Japan in Crisis

Back to article | Note about images

Colors in this image depict peak wave heights of the tsunami that hit Japan on Friday, March 11.

The magnitude-8.9 quake that struck Japan at 2:46 p.m. local time on Friday, March 11, spawned coast-slamming tsunamis that crossed the Pacific in less than 21 hours. The tsunami first reached a monitoring buoy just minutes after the quake occurred, and soon thereafter scientists released a forecast of wave heights and arrival times. Colors in this image depict peak wave heights. Near the undersea source of the temblor, about 375 kilometers north-northeast of Tokyo, and southeast of that epicenter, where much of the quakes energy was focused, the height of the tsunami wave likely exceeded 2.5 meters (depicted in black). But across most of the Pacific, the open-ocean height of the waves, which race across the sea at jetliner speeds, probably remained less than 20 centimeters (yellow and orange).

Credit: NOAA


Download the high-resolution JPG version of the image. (90 KB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.

Map of the United States showing the TeraGrid network.

TeraGrid is the world's largest, most comprehensive distributed cyberinfrastructure for open scientific research combining leadership class resources at 11 partner sites to create an integrated, persistent computational resource.

Using high-performance network connections, TeraGrid integrates high-performance computers, data resources and tools, and high-end experimental facilities around the country. Currently, TeraGrid resources include more than 2.5 petaflops of computing capability and more than 50 petabytes of online and archival data storage, with rapid access and retrieval over high-performance networks. Researchers can also access more than 100 discipline-specific databases.

TeraGrid is coordinated through the Grid Infrastructure Group (GIG) at the University of Chicago, working in partnership with the Resource Provider sites: Indiana University, the Louisiana Optical Network Initiative, National Center for Supercomputing Applications, the National Institute for Computational Sciences, Oak Ridge National Laboratory, Pittsburgh Supercomputing Center, Purdue University, San Diego Supercomputer Center, Texas Advanced Computing Center, and University of Chicago/Argonne National Laboratory, and the National Center for Atmospheric Research.

Credit: NSF


Download the high-resolution JPG version of the image. (85 KB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.



Email this pagePrint this page
Back to Top of page