
NSF Org: |
CNS Division Of Computer and Network Systems |
Recipient: |
|
Initial Amendment Date: | August 6, 2015 |
Latest Amendment Date: | August 5, 2021 |
Award Number: | 1531099 |
Award Instrument: | Standard Grant |
Program Manager: |
Bruce Kramer
CNS Division Of Computer and Network Systems CSE Directorate for Computer and Information Science and Engineering |
Start Date: | September 1, 2015 |
End Date: | August 31, 2022 (Estimated) |
Total Intended Award Amount: | $200,000.00 |
Total Awarded Amount to Date: | $216,328.00 |
Funds Obligated to Date: |
FY 2018 = $16,328.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
104 AIRPORT DR STE 2200 CHAPEL HILL NC US 27599-5023 (919)966-3411 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
104 Airport Dr, Ste 2200 Chapel Hill NC US 27599-1350 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): |
S&CC: Smart & Connected Commun, CISE Research Resources |
Primary Program Source: |
01001819DB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
Following the Northeast blackout of 2003 tremendous efforts have been made to modernize the electric power infrastructure of the United States by installing sophisticated, digital sensors called Phasor Measurement Units. These sensors continuously track the health of large, complex power grids with high accuracy. However, as the number of these sensors increases up into the thousands, grid operators are struggling to understand how the gigantic volumes of data can be efficiently communicated to control centers for taking timely control actions, especially in face of critical grid disturbances. Developing a reliable wide-area communication network that guarantees just-in-time data delivery is the greatest challenge. Unfortunately, neither the architecture of such networks nor the impacts of delays and data losses on control actions are well understood. This project will address this gap, and develop a highly resilient, fault-tolerant, and reliable distributed network control system for tomorrow's power grids using cutting-edge emerging technologies, such as cloud computing and software defined networks. Power systems are a critical infrastructural component in modern society. Therefore, results of this research will have a tremendous scientific impact on the smart grid and smart city research communities. The proposed multidisciplinary approach, test bed prototyping, and industry collaborations will help in educating next-generation workforce in the fields of smart grids and cyber-physical systems.
Overcoming network-induced latencies, data losses, and bandwidth limitations is the key for successful deployment of at-scale wide-area control of power systems. The merit of this research lies in the development of a distributed networked control system infrastructure that addresses all of these concerns. The approach encompasses multiple disciplines, ranging from power systems to control systems to advanced networking and cloud computing technologies. The proposed architecture will be realized via three interactive layers. Layer 1 will consist of physics-based controllers for power oscillation damping. Layer 2 will contain delay control rules for the communication network that work in tandem with the grid controllers. Layer 3 will consist of a supervisory controller realized through embedding and reconfiguration rules in a distributed cloud environment that continuously monitors the system status, and ensures fault-tolerance, resilience, and reliability of the overall closed-loop control system. The project team will also develop an integrated software and hardware testbed with open interfaces that can be used by other educational institutions.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
PROJECT OUTCOMES REPORT
Disclaimer
This Project Outcomes Report for the General Public is displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed in this Report are those of the PI and do not necessarily reflect the views of the National Science Foundation; NSF has not approved or endorsed its content.
Last Modified: 12/28/2022
Modified by: Yufeng Xin
Please report errors in award information by writing to: awardsearch@nsf.gov.