
NSF Org: |
CNS Division Of Computer and Network Systems |
Recipient: |
|
Initial Amendment Date: | August 3, 2015 |
Latest Amendment Date: | July 11, 2016 |
Award Number: | 1518845 |
Award Instrument: | Continuing Grant |
Program Manager: |
Nina Amla
namla@nsf.gov (703)292-7991 CNS Division Of Computer and Network Systems CSE Directorate for Computer and Information Science and Engineering |
Start Date: | September 1, 2015 |
End Date: | November 30, 2016 (Estimated) |
Total Intended Award Amount: | $324,029.00 |
Total Awarded Amount to Date: | $156,550.00 |
Funds Obligated to Date: |
FY 2016 = $2,764.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
W5510 FRANKS MELVILLE MEMORIAL LIBRARY STONY BROOK NY US 11794-0001 (631)632-9949 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
Department of Computer Science Stony Brook NY US 11794-4400 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | Secure &Trustworthy Cyberspace |
Primary Program Source: |
01001617DB NSF RESEARCH & RELATED ACTIVIT 01001718DB NSF RESEARCH & RELATED ACTIVIT 01001819DB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
The proliferation and increasing sophistication of censorship warrants continuing efforts to develop tools to evade it. Yet, designing effective mechanisms for censorship resistance ultimately depends on accurate models of the capabilities of censors, as well as how those capabilities will likely evolve. In contrast to more established disciplines within security, censorship resistance is relatively nascent, not yet having solid foundations for understanding censor capabilities or evaluating the effectiveness of evasion technologies. Consequently, the censorship resistance tools that researchers develop may ultimately fail to serve the needs of citizens who need them to communicate. Designers of these tools need a principled foundation for reasoning about design choices and tradeoffs.
To provide such a foundation, this project develops a science of censorship resistance: principled approaches to understanding the nature of censorship and the best ways to facilitate desired outcomes. The approach draws upon empirical studies of censorship as the foundation for models and abstractions to allow us to reason about the censorship-resistant technologies from first principles. The project aims to characterize and model censorship activities ranging from blocked search results to interference with international network traffic. The research develops theoretical models of censorship; reconciles these with large-scale empirical measurements; and uses these observations to design censorship-resistance tools to deploy in practice, as both components of Tor and standalone systems.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.